Détail de l'auteur
Auteur Wei Liu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Resolution enhancement for large-scale land cover mapping via weakly supervised deep learning / Qiutong Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
[article]
Titre : Resolution enhancement for large-scale land cover mapping via weakly supervised deep learning Type de document : Article/Communication Auteurs : Qiutong Yu, Auteur ; Wei Liu, Auteur ; Wesley Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 405 - 412 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] série temporelleRésumé : (Auteur) Multispectral satellite imagery is the primary data source for monitoring land cover change and characterizing land cover globally. However, the consistency of land cover monitoring is limited by the spatial and temporal resolutions of the acquired satellite images. The public availability of daily high-resolution images is still scarce. This paper aims to fill this gap by proposing a novel spatiotemporal fusion method to enhance daily low spatial resolution land cover mapping using a weakly supervised deep convolutional neural network. We merge Sentinel images and moderate resolution imaging spectroradiometer (MODIS )-derived thematic land cover maps under the application background of massive remote sensing data and the large spatial resolution gaps between MODIS data and Sentinel images. The neural network training was conducted on the public data set SEN12MS, while the validation and testing used ground truth data from the 2020 IEEE Geoscience and Remote Sensing Society data fusion contest. The proposed data fusion method shows that the synthesized land cover map has significantly higher spatial resolution than the corresponding MODIS-derived land cover map. The ensemble approach can be implemented for generating high-resolution time series of satellite images by fusing fine images from Sentinel-1 and -2 and daily coarse images from MODIS. Numéro de notice : A2021-373 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.6.405 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.14358/PERS.87.6.405 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97825
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 6 (June 2021) . - pp 405 - 412[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021061 SL Revue Centre de documentation Revues en salle Disponible Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
[article]
Titre : Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide Type de document : Article/Communication Auteurs : Chaoyang Niu, Auteur ; Haobo Zhang, Auteur ; Wei Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 67 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] décomposition d'image
[Termes IGN] détection de changement
[Termes IGN] effondrement de terrain
[Termes IGN] image radar moirée
[Termes IGN] mouvement de terrain
[Termes IGN] polarimétrie radar
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] ShenzhenRésumé : (auteur) Synthetic aperture radar (SAR) polarimetry has demonstrated high efficiency in the detection of landslides in vegetated mountainous areas. In such places, post-landslide soil layers appear to correspond to the typical surface scattering mechanism, which is significantly different from the volume scattering behaviour of the surrounding vegetation. However, a landslide in the complex surroundings of various landforms, involving naked hillslopes, construction fields, bare farmlands, and other such aspects, may not be accurately identified owing to the occurrence of surface scattering behaviours. In order to detect landslides using SAR polarimetry without the limitation of vegetated mountainous areas, we propose a novel method of combining change detection (CD) and an analytic hierarchy process (AHP) based on the Yamaguchi decomposition (YD) to identify landslides while ensuring fewer false alarms. In particular, CD is applied to a pair of pre- and post-event datasets to determine the regions modified by landslides or human activities, and the AHP is performed over the post-event dataset to identify the suspect landslide region characterised by the surface scattering mechanism. Finally, the two results are fused by a logical operation to identify the actual landslide by removing the non-modified surface scattering regions. A case study of the Shenzhen landslide in complex surroundings was considered to verify the performance of the proposed method (CD-AHP). The results indicate that the method could clearly define the main body of the Shenzhen landslide from the city suburbs with a small number of false alarms. Therefore, this method provides a considerable perspective for landslide detection in complex surroundings using SAR polarimetry. Numéro de notice : A2021-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.022 Date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97184
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 56 - 67[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environment / Shuai Liu in Computers & geosciences, vol 104 (July 2017)
[article]
Titre : A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environment Type de document : Article/Communication Auteurs : Shuai Liu, Auteur ; Ge Chen, Auteur ; Shifeng Yao, Auteur ; Fenglin Tian, Auteur ; Wei Liu, Auteur Année de publication : 2017 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] base de données marines
[Termes IGN] carte interactive
[Termes IGN] données spatiotemporelles
[Termes IGN] environnement géographique virtuel
[Termes IGN] monde virtuel
[Termes IGN] océanographie spatiale
[Termes IGN] positionnement par Argos
[Termes IGN] visualisation de données
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment. Numéro de notice : A2017-128 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2017.03.021 En ligne : http://doi.org/10.1016/j.cageo.2017.03.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84543
in Computers & geosciences > vol 104 (July 2017)[article]