Détail de l'auteur
Auteur Vinay Kumar Dadhwal |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Discrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans / Tanumi Kumar in Geocarto international, vol 34 n° 4 ([15/03/2019])
[article]
Titre : Discrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans Type de document : Article/Communication Auteurs : Tanumi Kumar, Auteur ; Abhishek Mandal, Auteur ; Dibyendu Dutta, Auteur ; R. Nagaraja, Auteur ; Vinay Kumar Dadhwal, Auteur Année de publication : 2019 Article en page(s) : pp 415 - 442 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse discriminante
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification Spectral angle mapper
[Termes IGN] image EO1-Hyperion
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] mangrove
[Termes IGN] palétuvierRésumé : (Auteur) In remote sensing the identification accuracy of mangroves is greatly influenced by terrestrial vegetation. This paper deals with the use of specific vegetation indices for extracting mangrove forests using Earth Observing-1 Hyperion image over a portion of Indian Sundarbans, followed by classification of mangroves into floristic composition classes. Five vegetation indices (three new and two published), namely Mangrove Probability Vegetation Index, Normalized Difference Wetland Vegetation Index, Shortwave Infrared Absorption Index, Normalized Difference Infrared Index and Atmospherically Corrected Vegetation Index were used in decision tree algorithm to develop the mangrove mask. Then, three full-pixel classifiers, namely Minimum Distance, Spectral Angle Mapper and Support Vector Machine (SVM) were evaluated on the data within the mask. SVM performed better than the other two classifiers with an overall precision of 99.08%. The methodology presented here may be applied in different mangrove areas for producing community zonation maps at finer levels. Numéro de notice : A2019-451 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1408699 Date de publication en ligne : 11/12/2017 En ligne : https://doi.org/10.1080/10106049.2017.1408699 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92839
in Geocarto international > vol 34 n° 4 [15/03/2019] . - pp 415 - 442[article]Aboveground-biomass estimation of a complex tropical forest in India using Lidar / Cédric Vega in Remote sensing, vol 7 n° 8 (August 2015)
[article]
Titre : Aboveground-biomass estimation of a complex tropical forest in India using Lidar Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Udayalakshmi Vepakomma, Auteur ; Jules Morel, Auteur ; Jean-Luc Bader, Auteur ; Gopalakrishnan Rajashekar, Auteur ; Chandra Shekhar Jha, Auteur ; Jérôme Ferêt, Auteur ; Christophe Proisy, Auteur ; Raphaël Pélissier, Auteur ; Vinay Kumar Dadhwal, Auteur Année de publication : 2015 Projets : 3-projet - voir note / Article en page(s) : pp 10607 - 10625 Note générale : bibliographie
The research has been supported by IFPCAR (Indo-French Promotion Center for Advanced Research) through the joint project number 4509-1 “Controlling for Uncertainty in Assessment of Forest Aboveground Biomass in the Western Ghats of India”between UMR AMAP, Montpellier and the National Remote Sensing Centre, Hyderabad. The authors also greatly acknowledge the French Institute of Pondicherry (IFP) for its financial support to Udayalakshmi Vepakomma for visiting IFPand for providing field control data from its long term monitoring plot in Uppangala.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse aérienne
[Termes IGN] canopée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] Ghats occidentaux
[Termes IGN] Inde
[Termes IGN] pente
[Termes IGN] profil en travers
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] volume en boisRésumé : (auteur) Light Detection and Ranging (Lidar) is a state of the art technology to assess forest aboveground biomass (AGB). To date, methods developed to relate Lidar metrics with forest parameters were built upon the vertical component of the data. In multi-layered tropical forests, signal penetration might be restricted, limiting the efficiency of these methods. A potential way for improving AGB models in such forests would be to combine traditional approaches by descriptors of the horizontal canopy structure. We assessed the capability and complementarity of three recently proposed methods for assessing AGB at the plot level using point distributional approach (DM), canopy volume profile approach (CVP), 2D canopy grain approach (FOTO), and further evaluated the potential of a topographical complexity index (TCI) to explain part of the variability of AGB with slope. This research has been conducted in a mountainous wet evergreen tropical forest of Western Ghats in India. AGB biomass models were developed using a best subset regression approach, and model performance was assessed through cross-validation. Results demonstrated that the variability in AGB could be efficiently captured when variables describing both the vertical (DM or CVP) and horizontal (FOTO) structure were combined. Integrating FOTO metrics with those of either DM or CVP decreased the root mean squared error of the models by 4.42% and 6.01%, respectively. These results are of high interest for AGB mapping in the tropics and could significantly contribute to the REDD+ program. Model quality could be further enhanced by improving the robustness of field-based biomass models and influence of topography on area-based Lidar descriptors of the forest structure. Numéro de notice : A2015--081 Affiliation des auteurs : LIF+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs70810607 Date de publication en ligne : 18/08/2015 En ligne : https://doi.org/10.3390/rs70810607 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84559
in Remote sensing > vol 7 n° 8 (August 2015) . - pp 10607 - 10625[article]Documents numériques
en open access
Aboveground-biomass estimation ... - pdf éditeurAdobe Acrobat PDF