Détail de l'auteur
Auteur Hadiseh Hasani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Toward optimum fusion of thermal hyperspectral and visible images in classification of urban area / Farhad Samadzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 4 (April 2017)
[article]
Titre : Toward optimum fusion of thermal hyperspectral and visible images in classification of urban area Type de document : Article/Communication Auteurs : Farhad Samadzadegan, Auteur ; Hadiseh Hasani, Auteur ; Peter Reinartz, Auteur Année de publication : 2017 Article en page(s) : pp 269 - 280 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande visible
[Termes IGN] bati
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] fusion d'images
[Termes IGN] géostatistique
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] indice de végétation
[Termes IGN] morphologie
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau routier
[Termes IGN] zone urbaineRésumé : (Auteur) Recently, classification of urban area based on multi-sensor fusion has been widely investigated. In this paper, the potential of using visible (VIS) and thermal infrared (TIR) hyperspectral images fusion for classification of urban area is evaluated. For this purpose, comprehensive spatial-spectral feature space is generated which includes vegetation index, differential morphological profile (DMP), attribute profile (AP), texture, geostatistical features, structural feature set (SFS) and local statistical descriptors from both datasets in addition to original datasets. Although Support Vector Machine (SVM) is an appropriate tool in the classification of high dimensional feature space, its performance is significantly affected by its parameters and feature space. Cuckoo search (CS) optimization algorithm with mixed binary-continuous coding is proposed for feature selection and SVM parameter determination simultaneously. Moreover, the significance of each selected feature category in the classification of a specific object is verified. Accuracy assessment on two subsets shows that stacking of VIS and TIR bands can improve the classification performance to 87 percent and 82 percent for two subsets, compare to VIS image (72 percent and 80 percent) and TIR image (50 percent and 56 percent). However, the optimum results obtained based on the proposed method which gains 94 percent and 92 percent. Furthermore, results show that using TIR beside VIS image improves classification accuracy of roads and buildings in urban area. Numéro de notice : A2017-111 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.4.269 En ligne : https://doi.org/10.14358/PERS.83.4.269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84589
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 4 (April 2017) . - pp 269 - 280[article]