Détail de l'auteur
Auteur Shengbo Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multilayer NMF for blind unmixing of hyperspectral imagery with additional constraints / L. Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 4 (April 2017)
[article]
Titre : Multilayer NMF for blind unmixing of hyperspectral imagery with additional constraints Type de document : Article/Communication Auteurs : L. Chen, Auteur ; Shengbo Chen, Auteur ; Xulin Guo, Auteur Année de publication : 2017 Article en page(s) : pp 307 - 316 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] calcul matriciel
[Termes IGN] contrainte spectrale
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] programmation par contraintes
[Termes IGN] réflectanceRésumé : (Auteur) Due to the coincidence of hyperspectral reflectance nonnegativity (and its corresponding abundance) with nonnegative matrix factorization (NMF) methods, NMF has been widely applied to unmix hyperspectral images in recent years. However, many local minima persist because of the nonconvexity of the objective function. Thus, the nonnegativity constraint is not sufficient and additional auxiliary constraints should be applied to objective functions. In this paper, a new approach we call constrained multilayer NMF (CMLNMF), is proposed for hyperspectral data. In this approach, the mixed spectra are regarded as endmember signatures that has been contaminated by multiplicative noise. The purpose of CMLNMF is to eliminate noise by hierarchical processing until the endmember spectra are obtained. Also, the hierarchical processing is self-adaptive to make the algorithm more effective. Furthermore, in each layer two constraints are implemented on the objective function. One is sparseness on the abundance matrix and the other is minimum volume on the spectral matrix. The hierarchical processing separates the abundance matrix into a series of matrices that make the characteristic of sparseness more obvious and meaningful. The proposed algorithm is applied to synthetic data and real hyperspectral data for quantitative evaluation. According to the comparison with other algorithms, CMLNMF has better performance and provides effective solutions for blind unmixing of hyperspectral image data. Numéro de notice : A2017-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.14358/PERS.83.4.307 En ligne : https://doi.org/10.14358/PERS.83.4.307 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84590
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 4 (April 2017) . - pp 307 - 316[article]