Détail de l'auteur
Auteur Paul Romanczyk |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics / David Kelbe in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
[article]
Titre : Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics Type de document : Article/Communication Auteurs : David Kelbe, Auteur ; Jan Van Aardt, Auteur ; Paul Romanczyk, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 729 - 741 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] acquisition de données
[Termes IGN] carte de confiance
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] mesure géométrique
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] numérisation
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] superpositionRésumé : (Auteur) Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in order to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. This paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm. Numéro de notice : A2017-142 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2614251 En ligne : https://doi.org/10.1109/TGRS.2016.2614251 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84630
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 2 (February 2017) . - pp 729 - 741[article]