Détail de l'auteur
Auteur Natasha Alechina |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
A method for matching crowd-sourced and authoritative geospatial data / Heshan Du in Transactions in GIS, vol 21 n° 2 (April 2017)
[article]
Titre : A method for matching crowd-sourced and authoritative geospatial data Type de document : Article/Communication Auteurs : Heshan Du, Auteur ; Natasha Alechina, Auteur ; Michael Jackson, Auteur ; Glen Hart, Auteur Année de publication : 2017 Article en page(s) : pp 406 – 427 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement automatique
[Termes IGN] appariement de données localisées
[Termes IGN] données ouvertes
[Termes IGN] France (administrative)
[Termes IGN] géomatique web
[Termes IGN] Grande-Bretagne
[Termes IGN] infrastructure nationale des données localisées
[Termes IGN] OpenStreetMap
[Termes IGN] organisme cartographique nationalRésumé : (auteur) A method for matching crowd-sourced and authoritative geospatial data is presented. A level of tolerance is defined as an input parameter as some difference in the geometry representation of a spatial object is to be expected. The method generates matches between spatial objects using location information and lexical information, such as names and types, and verifies consistency of matches using reasoning in qualitative spatial and description logic. We test the method by matching geospatial data from OpenStreetMap and the national mapping agencies of Great Britain and France. We also analyze how the level of tolerance affects the precision and recall of matching results for the same geographic area using 12 different levels of tolerance within a range of 1 to 80 m. The generated matches show potential in helping enrich and update geospatial data. Numéro de notice : A2017-168 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12210 En ligne : http://dx.doi.org/10.1111/tgis.12210 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84702
in Transactions in GIS > vol 21 n° 2 (April 2017) . - pp 406 – 427[article]Qualitative spatial logics for buffered geometries / Heshan Du in Journal of Artificial Intelligence Research, vol 56 (May - August 2016)
[article]
Titre : Qualitative spatial logics for buffered geometries Type de document : Article/Communication Auteurs : Heshan Du, Auteur ; Natasha Alechina, Auteur Année de publication : 2016 Article en page(s) : pp 693 - 745 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données localisées
[Termes IGN] cohérence des données
[Termes IGN] cohérence géométrique
[Termes IGN] cohérence logique
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace métrique
[Termes IGN] objet géographique
[Termes IGN] OpenStreetMap
[Termes IGN] relation spatiale
[Termes IGN] zone tamponRésumé : (auteur) This paper describes a series of new qualitative spatial logics for checking consistency of sameAs and partOf matches between spatial objects from different geospatial datasets, especially from crowd-sourced datasets. Since geometries in crowd-sourced data are usually not very accurate or precise, we buffer geometries by a margin of error or a level of tolerance, and define spatial relations for buffered geometries. The spatial logics formalize the notions of `buffered equal' (intuitively corresponding to `possibly sameAs'), `buffered part of' (`possibly partOf'), `near' (`possibly connected') and `far' (`definitely disconnected'). A sound and complete axiomatisation of each logic is provided with respect to models based on metric spaces. For each of the logics, the satisfiability problem is shown to be NP-complete. Finally, we briefly describe how the logics are used in a system for generating and debugging matches between spatial objects, and report positive experimental evaluation results for the system. Numéro de notice : A2016--130 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1613/jair.5140 En ligne : https://doi.org/10.1613/jair.5140 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85122
in Journal of Artificial Intelligence Research > vol 56 (May - August 2016) . - pp 693 - 745[article]Matching disparate geospatial datasets and validating matches using spatial logic / Heshan Du (2015)
Titre : Matching disparate geospatial datasets and validating matches using spatial logic Type de document : Thèse/HDR Auteurs : Heshan Du, Auteur ; Natasha Alechina, Directeur de thèse ; M.J. Jackson, Directeur de thèse Editeur : Nottingham : University of Nottingham Année de publication : 2015 Importance : 211 p. Note générale : Bibliographie
Thesis submitted to the University of Nottingham for the degree of Doctor of PhilosophyLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement de données localisées
[Termes IGN] appariement géométrique
[Termes IGN] cartographie collaborative
[Termes IGN] cohérence des données
[Termes IGN] données localisées de référence
[Termes IGN] données localisées des bénévoles
[Termes IGN] données vectorielles
[Termes IGN] intégration de données
[Termes IGN] jeu de données localisées
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] Ordnance Survey (UK)
[Termes IGN] relation topologique
[Termes IGN] zone tamponRésumé : (auteur) In recent years, the emergence and development of crowd-sourced geospatial data has provided challenges and opportunities to national mapping agencies as well as commercial mapping organisations. Crowd-sourced data involves non-specialists in data collection, sharing and maintenance. Compared to authoritative geospatial data, which is collected by surveyors or other geodata professionals, crowd-sourced data is less accurate and less structured, but often provides richer user-based information and reflects real world changes more quickly at a much lower cost. In order to maximize the synergistic use of authoritative and crowd-sourced geospatial data, this research investigates the problem of how to establish and validate correspondences (matches) between spatial features from disparate geospatial datasets. To reason about and validate matches between spatial features, a series of new qualitative spatial logics was developed. Their soundness, completeness, decidability and complexity theorems were proved for models based on a metric space. A software tool `MatchMaps' was developed, which generates matches using location and lexical information, and verifies consistency of matches using reasoning in description logic and qualitative spatial logic. MatchMaps was evaluated by the author and experts from Ordnance Survey, the national mapping agency of Great Britain. In experiments, it achieved high precision and recall, as well as reduced human effort. The methodology developed and implemented in MatchMaps has a wider application than matching authoritative and crowd-sourced data and could be applied wherever it is necessary to match two geospatial datasets of vector data. Note de contenu : 1. Introduction
1.1. Research Question
1.2. Research Aim and Objectives
1.3. Contributions and Structure of the Thesis
2. Context of Research
2.1. Development of Crowd-sourced Geospatial Data
2.2. Quality of OpenStreetMap Data
2.3. Usability of OpenStreetMap Data
3. Litterature Review
3.1. Geospatial Data Matching
3.2. Ontology Matching
3.3. Spatial Logic
4. A Framework for Integrating Geospatial Datasets
4.1. Building up the Framework
4.2. Rationale of the Framework
4.3. MatchMaps: an Implemented System
5. Matching Spatial Features
5.1. Theoretical Basis for Matching Geometries
5.2. Matching Geometries
5.3. Matching Spatial Objects
6. Validating Matches using Description Logic
6.1. Description Logic ALCO
6.2. Validationg Terminology Matches using Description Logic
6.3. Validating Object Matches using Description Logic
7. A Logic of NEAR and FAR for Buffered Points
7.1. Syntax, Semantics and Axioms of LNF
7.2. Soundness and Completeness of LNF
7.3. Decidability and Complexity of LNF
7.4. Interpreting L(LNF) in R²
8. A Logic of NEAR and FAR for Buffered Geometries
8.1. Syntax, Semantics and Axioms of LNFS
8.2. Soundness and Completeness of LNFS
8.3. Decidability and Complexity of LNFS
8.4. Interpreting L(LNFS) in R²
9. A Logic of Part and Whole for Buffered Geometries
9.1. Syntax, Semantics and Axioms of LBPT
9.2. Soundness and Completeness of LBPT
9.3. Decidability and Complexity of LBPT
9.4. Interpreting L(LBPT) in R²
10. Validating Matches using Qualitative spatial Logic
10.1. Validating Matches using LNF, LNFS ans LBPT
10.2. Actions for Retracting Problematic Matches
11. Evaluation and Discussion
11.1. Developer Evaluation of MatchMaps
11.2. User Evaluation of MatchMaps
11.3. Discussion
12. Conclusion and Future Work
12.1. Conclusion
12.2. Future WorkNuméro de notice : 19794 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Thèse étrangère Note de thèse : PhD thesis : : Nottingham : 2015 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85041
Titre : Using qualitative spatial logic for validating crowd-sourced geospatial data Type de document : Article/Communication Auteurs : Heshan Du, Auteur ; Hai Hoang Nguyen, Auteur ; Natasha Alechina, Auteur ; Brian Logan, Auteur ; Mike Jackson, Auteur ; John Goodwin, Auteur Editeur : Nottingham : University of Nottingham Année de publication : 2015 Conférence : IAAI 2015, 27th conference on Innovative Applications of Artificial Intelligence 25/01/2015 29/01/2015 Austin Texas - Etats-Unis open access proceedings Importance : 7 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement de données localisées
[Termes IGN] cohérence des données
[Termes IGN] données localisées
[Termes IGN] données localisées de référence
[Termes IGN] données localisées des bénévoles
[Termes IGN] logique
[Termes IGN] Ordnance Survey (UK)Résumé : (auteur) We describe a tool, MatchMaps, that generates sameAs and partOf matches between spatial objects (such as shops, shopping centres, etc.) in crowd-sourced and authoritative geospatial datasets. MatchMaps uses reasoning in qualitative spatial logic, description logic and truth maintenance techniques, to produce a consistent set of matches. We report the results of an initial evaluation of MatchMaps by experts from Ordnance Survey (Great Britain's National Mapping Authority). In both the case studies considered, MatchMaps was able to correctly match spatial objects (high precision and recall) with minimal human intervention. Numéro de notice : C2015-054 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Communication DOI : sans En ligne : https://www.aaai.org/ocs/index.php/IAAI/IAAI15/paper/view/9687/9896 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85127 Documents numériques
en open access
Using qualitative spatial logicAdobe Acrobat PDF Geospatial information integration for authoritative and crowd sourced road vector data / H. Du in Transactions in GIS, vol 16 n° 4 (August 2012)
[article]
Titre : Geospatial information integration for authoritative and crowd sourced road vector data Type de document : Article/Communication Auteurs : H. Du, Auteur ; Natasha Alechina, Auteur ; G. Hart, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 455 - 476 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement de données localisées
[Termes IGN] conflation
[Termes IGN] données localisées de référence
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] données vectorielles
[Termes IGN] intégration de données
[Termes IGN] ontologieRésumé : (Auteur) This article describes results from a research project undertaken to explore the technical issues associated with integrating unstructured crowd sourced data with authoritative national mapping data. The ultimate objective is to develop methodologies to ensure the feature enrichment of authoritative data, using crowd sourced data. Users increasingly find that they wish to use data from both kinds of geographic data sources. Different techniques and methodologies can be developed to solve this problem. In our previous research, a position map matching algorithm was developed for integrating authoritative and crowd sourced road vector data, and showed promising results (Anand et al. 2010). However, especially when integrating different forms of data at the feature level, these techniques are often time consuming and are more computationally intensive than other techniques available. To tackle these problems, this project aims at developing a methodology for automated conflict resolution, linking and merging of geographical information from disparate authoritative and crowd-sourced data sources. This article describes research undertaken by the authors on the design, implementation, and evaluation of algorithms and procedures for producing a coherent ontology from disparate geospatial data sources. To integrate road vector data from disparate sources, the method presented in this article first converts input data sets to ontologies, and then merges these ontologies into a new ontology. This new ontology is then checked and modified to ensure that it is consistent. The developed methodology can deal with topological and geometry inconsistency and provide more flexibility for geospatial information merging. Numéro de notice : A2012-362 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/j.1467-9671.2012.01303.x Date de publication en ligne : 03/05/2012 En ligne : https://doi.org/10.1111/j.1467-9671.2012.01303.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31808
in Transactions in GIS > vol 16 n° 4 (August 2012) . - pp 455 - 476[article]