Détail de l'auteur
Auteur Manali Pal |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data / Manali Pal in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data Type de document : Article/Communication Auteurs : Manali Pal, Auteur ; Rajib Maity, Auteur ; Mayank Suman, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1351 - 1362 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse en composantes principales
[Termes IGN] angle d'incidence
[Termes IGN] bande C
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image Risat-1
[Termes IGN] modèle d'incertitude
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation
[Termes IGN] teneur en eau liquideRésumé : (Auteur) This paper attempts to probabilistically estimate the surface soil moisture content (SMC) by using the synthetic aperture radar data provided by radar imaging satellite1. The novelty of this paper lies in: 1) developing a combined index to understand the role of all the backscattering coefficients with different polarization and soil texture information in influencing the SMC; 2) using normalized incidence angles, which enables the model to be applicable for different incidence angles; and 3) determination of uncertainty range of the estimated SMC. The dimensionality problem, which is frequently observed in the multivariate analysis, is reduced in the development of the combined index by the use of supervised principal component analysis (SPCA). The SPCA also ensures the maximum attainable association between the developed combined index and surface SMC above wilting point (WP). The association between the combined index and the surface SMC above WP is modeled through joint probability distribution by using the Frank copula. The model is developed and validated with the field soil moisture values over 334 monitoring points within the study area. The outcomes obtained by applying the proposed model indicate an encouraging potential of the model to be applied for bareland and vegetated land ( Numéro de notice : A2017-153 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2623378 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2623378 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84686
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1351 - 1362[article]