Détail de l'auteur
Auteur Shijian Lu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised feature learning for land-use scene recognition / Jiayuan Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
[article]
Titre : Unsupervised feature learning for land-use scene recognition Type de document : Article/Communication Auteurs : Jiayuan Fan, Auteur ; Tao Chen, Auteur ; Shijian Lu, Auteur Année de publication : 2017 Article en page(s) : pp 2250 - 2261 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse discriminante
[Termes IGN] codage
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] invariant
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] reconnaissance automatique
[Termes IGN] Singapour
[Termes IGN] utilisation du solRésumé : (Auteur) This paper proposes a novel unsupervised feature learning algorithm for land-use scene recognition on very high resolution remote sensing imagery. The proposed technique utilizes a multipath sparse coding architecture in order to capture multiple aspects of discriminative structures within complex remote sensing sceneries. Unlike the previous sparse coding and bag-of-visual-words-based techniques that rely on the handcrafted feature descriptors such as scale-invariant feature transform, the proposed technique extracts dense low-level features from the raw data, including the visual (RGB) data and near-infrared (NIR) data, using image patches of varying sizes at different layers. The proposed technique has been evaluated on three data sets, including the 21-category UC Merced landuse RGB data set with a 1-ft spatial resolution, the 9-category ground scene RGB-NIR data set, and the 10-category Singapore land-use RGB-NIR data set with a 0.5-m spatial resolution. The experimental results show that the proposed technique outperforms the state-of-the-art methods. Numéro de notice : A2107-174 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2640186 En ligne : https://doi.org/10.1109/TGRS.2016.2640186 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84723
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 4 (April 2017) . - pp 2250 - 2261[article]