Détail de l'auteur
Auteur Zoe Falomir |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Rule-guided human classification of Volunteered Geographic Information / Ahmed Loai Ali in ISPRS Journal of photogrammetry and remote sensing, vol 127 (May 2017)
[article]
Titre : Rule-guided human classification of Volunteered Geographic Information Type de document : Article/Communication Auteurs : Ahmed Loai Ali, Auteur ; Zoe Falomir, Auteur ; Falko Schmid, Auteur ; Christian Freksa, Auteur Année de publication : 2017 Article en page(s) : pp 3 – 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification
[Termes IGN] données descriptives
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] exploration de données
[Termes IGN] imprécision des données
[Termes IGN] production participative
[Termes IGN] règle d'association
[Termes IGN] relation topologiqueRésumé : (auteur) During the last decade, web technologies and location sensing devices have evolved generating a form of crowdsourcing known as Volunteered Geographic Information (VGI). VGI acted as a platform of spatial data collection, in particular, when a group of public participants are involved in collaborative mapping activities: they work together to collect, share, and use information about geographic features. VGI exploits participants’ local knowledge to produce rich data sources. However, the resulting data inherits problematic data classification. In VGI projects, the challenges of data classification are due to the following: (i) data is likely prone to subjective classification, (ii) remote contributions and flexible contribution mechanisms in most projects, and (iii) the uncertainty of spatial data and non-strict definitions of geographic features. These factors lead to various forms of problematic classification: inconsistent, incomplete, and imprecise data classification. This research addresses classification appropriateness. Whether the classification of an entity is appropriate or inappropriate is related to quantitative and/or qualitative observations. Small differences between observations may be not recognizable particularly for non-expert participants. Hence, in this paper, the problem is tackled by developing a rule-guided classification approach. This approach exploits data mining techniques of Association Classification (AC) to extract descriptive (qualitative) rules of specific geographic features. The rules are extracted based on the investigation of qualitative topological relations between target features and their context. Afterwards, the extracted rules are used to develop a recommendation system able to guide participants to the most appropriate classification. The approach proposes two scenarios to guide participants towards enhancing the quality of data classification. An empirical study is conducted to investigate the classification of grass-related features like forest, garden, park, and meadow. The findings of this study indicate the feasibility of the proposed approach. Numéro de notice : A2017-218 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.06.003 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85093
in ISPRS Journal of photogrammetry and remote sensing > vol 127 (May 2017) . - pp 3 – 15[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017053 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017052 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt