Détail de l'auteur
Auteur Jennifer Smith Mason |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Domains of uncertainty visualization research: a visual summary approach / Jennifer Smith Mason in Cartography and Geographic Information Science, Vol 44 n° 4 (July 2017)
[article]
Titre : Domains of uncertainty visualization research: a visual summary approach Type de document : Article/Communication Auteurs : Jennifer Smith Mason, Auteur ; David Retchless, Auteur ; Alexander Klippel, Auteur Année de publication : 2017 Article en page(s) : pp 296 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] carte heuristique
[Termes IGN] carte synthétique
[Termes IGN] classification
[Termes IGN] incertitude des données
[Termes IGN] interface web
[Termes IGN] visualisationRésumé : (auteur) The inherent uncertainty of geospatial data has engendered a critical research agenda addressing all facets of uncertainty visualization due to the communicative efficiency of graphical representation. To organize this broad research area, we have reviewed literature on geospatial uncertainty visualization and systematically and iteratively classified research in this field. Upon creating a classification, we developed several visual summaries over time, refining the classification and subsequent graphic as new relevant topics emerged. This visual summary extends current existing approaches to taxonomies by allowing users a quick visual overview of relevant topics in a research area at a glance. For each research paper on uncertainty visualization, this classification can be used to visually represent which domains are covered. In order to ensure that the visual summary approach and the corresponding domains developed in this article can be used reliably, we performed an inter-rater agreement task. The high agreement reveals that the domains in the classification that were identified are intuitive and can lead to objective, reproducible classifications (visual summaries) of research papers. In future research, we plan to refine the visual classification/summary approach by providing guided classification via a web interface to visually classify the entire body of literature on geospatial uncertainty visualization and visually explore any trends in research topics, how they have changed over the years, and identify sparser topics that still need to be addressed. Numéro de notice : A2017-223 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2016.1154804 En ligne : http://dx.doi.org/10.1080/15230406.2016.1154804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85104
in Cartography and Geographic Information Science > Vol 44 n° 4 (July 2017) . - pp 296 - 309[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2017041 RAB Revue Centre de documentation En réserve L003 Disponible