Détail de l'auteur
Auteur Boonsap Witchayangkoon |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Elements of GPS precise point positioning Type de document : Thèse/HDR Auteurs : Boonsap Witchayangkoon, Auteur ; Alfred Leick, Directeur de thèse Editeur : Maine [Etats-Unis] : University of Maine Année de publication : 2000 Importance : 286 p. Note générale : bibliographie
A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (in Spatial Information Science and Engineering)Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] éphémérides de satellite
[Termes IGN] filtre de Kalman
[Termes IGN] géodésie spatiale
[Termes IGN] Global Orbitography Navigation Satellite System
[Termes IGN] Global Positioning System
[Termes IGN] horloge
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] marée océanique
[Termes IGN] orbite
[Termes IGN] positionnement ponctuel précis
[Termes IGN] propagation ionosphérique
[Termes IGN] propagation troposphérique
[Termes IGN] récepteur bifréquence
[Termes IGN] récepteur monofréquence
[Termes IGN] surcharge atmosphérique
[Termes IGN] surcharge océanique
[Termes IGN] tectonique des plaquesRésumé : (auteur) The International GPS Service (IGS) now regularly makes accurate GPS ephemeris and satellite clock information available over the Internet. The satellite coordinates are given in the International Terrestrial Reference Frame (ITRF). This thesis investigates Precise Point Positioning (PPP) using dual and single frequency pseudorange and carrier phase observations. Both the static and kinematic modes are investigated. The static PPP solution examples use six-hour data sets from four stations. The observations were made while Selective Availability (SA) was active and after it had been discontinued. The static solutions agree to within 10 cm with published coordinates or with solutions obtained from the Jet Propulsion Laboratory (JPL) PPP Internet service. The kinematic solutions show a discrepancy of less than one meter, mostly around half a meter. For observations with low multipath, the research shows that single-frequency ionosphere-free PPP solutions are equivalent to the dual-frequency solutions. In case of single-frequency observations the pseudorange dominates the solution. Using a priori tropospheric information does not seem to improve dual-frequency PPP solutions as compared to the case when the vertical tropospheric delay is estimated as part of the Kalman filter solution. However, a priori tropospheric information seems to provide benefits to single-frequency kinematic PPP. The Saastamoinen model is used when computing the zenith tropospheric delay. In all cases, the Neill's mapping function is applied. The studies show high correlation between receiver clock and the up coordinate. The troposphere has a high negative correlation with receiver clock and the up coordinate. However, the troposphere is more correlated with the receiver clock than the up component. All solutions incorporate corrections for solid earth tides, relativity, and satellite antenna phase center offsets. Corrections have not been applied for the phase wind-up angle. The widelane and ionospheric functions are used to detect and fix cycle slips in a semigraphical manner. Since even a single cycle slip significantly falsifies PPP solutions, it is suggested that between-satellite carrier phases be used as another way of detecting slips (now since SA has been discontinued). The software consists mostly of highly modular Mathcad functions that form an excellent base for continued research of PPP. Note de contenu : 1. Introduction
1.1. Research goals
1.2. Motivation
1.3. Previous relevant works
1.4. Approach
1.5. Thesis organization
2. Background
2.1. The GPS system
2.2. The GLONASS system
2.3. Components of PPP
3. Geophysical models
3.1. Deformable Earth
3.2. Solid Earth tides
3.3. Ocean loading
3.4. Plate tectonic motion
3.5. Atmospheric tides
4. International terrestrial reference frame (ITRF)
4.1. General statements on reference frames
4.2. The ITRF
4.3. Transformation between ITRFs
4.4. Orientation and origin of the ITRF
4.5. The draft ITRF-2000 reference frame
4.6. GPS WGS-84
4.7. Agreement between WGS-84 and ITRF
5. Troposphere and ionosphere
5.1. Standard atmosphere
5.2. Troposhpere
5.3. Ionosphere
6. Precise IGS orbit and satellite clock
6.1. IGS orbital analysis and its products
6.2. The SP3 ephemeris
6.3. Lagrange interpolation
7. Mathematical implementations
7.1. Dilution of precision
7.2. Cycle slip detection and removal
7.3. Kalman filter
8. Numerical study and results
8.1. Data sets
8.2. A priori Kalman filter settings
8.3. Analysis Example
8.4. Experiments
9. Conclusions and recommendations
9.1. Conclusions
9.2. RecommendationsNuméro de notice : 19800 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : PhD thesis : Spatial Information Science and Engineering : Maine : 2000 Organisme de stage : The University of Maine DOI : sans En ligne : https://www.academia.edu/583010/Elements_of_GPS_precise_point_positioning Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85126 Documents numériques
en open access
Elements of gps precise point positioningAdobe Acrobat PDF