Détail de l'auteur
Auteur Binbin Lu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geographically weighted regression with parameter-specific distance metrics / Binbin Lu in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
[article]
Titre : Geographically weighted regression with parameter-specific distance metrics Type de document : Article/Communication Auteurs : Binbin Lu, Auteur ; Chris Brunsdon, Auteur ; Martin Charlton, Auteur ; Paul Harris, Auteur Année de publication : 2017 Article en page(s) : pp 982 - 998 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] anisotropie
[Termes IGN] métrique
[Termes IGN] régression géographiquement pondérée
[Termes IGN] relation spatialeRésumé : (auteur) Geographically weighted regression (GWR) is an important local technique to model spatially varying relationships. A single distance metric (Euclidean or non-Euclidean) is generally used to calibrate a standard GWR model. However, variations in spatial relationships within a GWR model might also vary in intensity with respect to location and direction. This assertion has led to extensions of the standard GWR model to mixed (or semiparametric) GWR and to flexible bandwidth GWR models. In this article, we present a strongly related extension in fitting a GWR model with parameter-specific distance metrics (PSDM GWR). As with mixed and flexible bandwidth GWR models, a back-fitting algorithm is used for the calibration of the PSDM GWR model. The value of this new GWR model is demonstrated using a London house price data set as a case study. The results indicate that the PSDM GWR model can clearly improve the model calibration in terms of both goodness of fit and prediction accuracy, in contrast to the model fits when only one metric is singly used. Moreover, the PSDM GWR model provides added value in understanding how a regression model’s relationships may vary at different spatial scales, according to the bandwidths and distance metrics selected. PSDM GWR deals with spatial heterogeneities in data relationships in a general way, although questions remain on its model diagnostics, distance metric specification, and computational efficiency, providing options for further research. Numéro de notice : A2017-238 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1263731 En ligne : http://dx.doi.org/10.1080/13658816.2016.1263731 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85172
in International journal of geographical information science IJGIS > vol 31 n° 5-6 (May-June 2017) . - pp 982 - 998[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2017031 RAB Revue Centre de documentation En réserve L003 Disponible