Détail de l'auteur
Auteur Jie Mei |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Xiaohua Tong, Auteur ; Feiping Nie, Auteur ; Haiyang Huang, Auteur ; Jie Mei, Auteur Année de publication : 2018 Article en page(s) : pp 621 - 634 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification semi-dirigée
[Termes IGN] graphe
[Termes IGN] image aérienne
[Termes IGN] programmation par contraintes
[Termes IGN] régression linéaire
[Termes IGN] scèneRésumé : (Auteur) The performance of scene classification relies heavily on the spatial and structural features that are extracted from high spatial resolution remote-sensing images. Existing approaches, however, are limited in adequately exploiting latent relationships between scene images. Aiming to decrease the distances between intraclass images and increase the distances between interclass images, we propose a latent relationship learning framework that integrates an adaptive graph with the constraints of the feature space and label propagation for high-resolution aerial image classification. To describe the latent relationships among scene images in the framework, we construct an adaptive graph that is embedded into the constrained joint space for features and labels. To remove redundant information and improve the computational efficiency, subspace learning is introduced to assist in the latent relationship learning. To address out-of-sample data, linear regression is adopted to project the semisupervised classification results onto a linear classifier. Learning efficiency is improved by minimizing the objective function via the linearized alternating direction method with an adaptive penalty. We test our method on three widely used aerial scene image data sets. The experimental results demonstrate the superior performance of our method over the state-of-the-art algorithms in aerial scene image classification. Numéro de notice : A2018-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2752217 Date de publication en ligne : 24/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2752217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89854
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 621 - 634[article]3D tree modeling from incomplete point clouds via optimization and L1-MST / Jie Mei in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
[article]
Titre : 3D tree modeling from incomplete point clouds via optimization and L1-MST Type de document : Article/Communication Auteurs : Jie Mei, Auteur ; Liqiang Zhang, Auteur ; Shihao Wu, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 999 - 1021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme STA
[Termes IGN] arbre (flore)
[Termes IGN] branche (arbre)
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique d'objet
[Termes IGN] optimisation (mathématiques)
[Termes IGN] semis de points
[Termes IGN] semis de points clairsemés
[Termes IGN] squelettisationRésumé : (auteur) Reconstruction of 3D trees from incomplete point clouds is a challenging issue due to their large variety and natural geometric complexity. In this paper, we develop a novel method to effectively model trees from a single laser scan. First, coarse tree skeletons are extracted by utilizing the L1-median skeleton to compute the dominant direction of each point and the local point density of the point cloud. Then we propose a data completion scheme that guides the compensation for missing data. It is an iterative optimization process based on the dominant direction of each point and local point density. Finally, we present a L1-minimum spanning tree (MST) algorithm to refine tree skeletons from the optimized point cloud, which integrates the advantages of both L1-median skeleton and MST algorithms. The proposed method has been validated on various point clouds captured from single laser scans. The experiment results demonstrate the effectiveness and robustness of our method for coping with complex shapes of branching structures and occlusions. Numéro de notice : A2017-239 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1264075 En ligne : http://dx.doi.org/10.1080/13658816.2016.1264075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85173
in International journal of geographical information science IJGIS > vol 31 n° 5-6 (May-June 2017) . - pp 999 - 1021[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2017031 RAB Revue Centre de documentation En réserve L003 Disponible