Détail de l'auteur
Auteur Yongjiu Feng |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparison of change and static state as the dependent variable for modeling urban growth / Yongjiu Feng in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : Comparison of change and static state as the dependent variable for modeling urban growth Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur ; Rong Wang, Auteur ; Xiaohua Tong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6975 - 6998 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] auto-régression
[Termes IGN] automate cellulaire
[Termes IGN] Chine
[Termes IGN] croissance urbaine
[Termes IGN] distribution spatiale
[Termes IGN] utilisation du sol
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) To examine the effects of historical land-use change and static land-use state on the modeling, we established three cellular automata (CA) models using the spatial autoregressive model (SAR). The models are CASAR-Cha based on the change data, CASAR-Sta based on the start-state data, and CASAR-End based on the end-state data. The models that considered five different neighborhood sizes (from 3 × 3 to 11 × 11) were applied to simulate the urban growth of Jiaxing, China from 2008 to 2018, and predict the urban scenario to the year 2048. All three models can accurately reproduce the urban growth from 2008 to 2018, and the CASAR-End model performed best in calibration and validation. The differences in historical land data did affect the spatial distribution of the simulated urban patterns. The neighborhood size has a significant impact on the model's allocation ability, yet the appropriate size depends on the unique landscape context being studied. Numéro de notice : A2022-752 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959657 Date de publication en ligne : 02/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959657 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101744
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6975 - 6998[article]A review of assessment methods for cellular automata models of land-use change and urban growth / Xiaohua Tong in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
[article]
Titre : A review of assessment methods for cellular automata models of land-use change and urban growth Type de document : Article/Communication Auteurs : Xiaohua Tong, Auteur ; Yongjiu Feng, Auteur Année de publication : 2020 Article en page(s) : pp 866 - 898 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse du paysage
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] croissance urbaine
[Termes IGN] dynamique de la végétation
[Termes IGN] dynamique spatiale
[Termes IGN] Kappa de Cohen
[Termes IGN] matrice
[Termes IGN] modèle de simulation
[Termes IGN] population urbaine
[Termes IGN] propagation d'erreurRésumé : (auteur) Cellular automata (CA) models are in growing use for land-use change simulation and future scenario prediction. It is necessary to conduct model assessment that reports the quality of simulation results and how well the models reproduce reliable spatial patterns. Here, we review 347 CA articles published during 1999–2018 identified by a Scholar Google search using ‘cellular automata’, ‘land’ and ‘urban’ as keywords. Our review demonstrates that, during the past two decades, 89% of the publications include model assessment related to dataset, procedure and result using more than ten different methods. Among all methods, cell-by-cell comparison and landscape analysis were most frequently applied in the CA model assessment; specifically, overall accuracy and standard Kappa coefficient respectively rank first and second among all metrics. The end-state assessment is often criticized by modelers because it cannot adequately reflect the modeling ability of CA models. We provide five suggestions to the method selection, aiming to offer a background framework for future method choices as well as urging to focus on the assessment of input data and error propagation, procedure, quantitative and spatial change, and the impact of driving factors. Numéro de notice : A2020-809 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684499 Date de publication en ligne : 05/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684499 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94880
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 866 - 898[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 RAB Revue Centre de documentation En réserve L003 Disponible A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods / Yongjiu Feng in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)
[article]
Titre : A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 74 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de données
[Termes IGN] automate cellulaire
[Termes IGN] croissance urbaine
[Termes IGN] données spatiotemporelles
[Termes IGN] dynamique spatiale
[Termes IGN] méthode heuristique
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] Shanghai (Chine)
[Termes IGN] utilisation du solRésumé : (auteur) We develop a new geographical cellular automata (CA) modeling framework, named UrbanCA, through reconstructing the essential CA structure and incorporating nonspatial, spatial, and heuristic approaches. The new UrbanCA is featured by 1) the improvement of the CA modeling framework by reformulating relationships among CA components, 2) the development of two scaling parameters to adjust the effects of transition probability and neighborhood, 3) the incorporation of a variety of statistical and heuristic methods to construct transition rules, and 4) the inclusion of urban planning regulations and spatial heterogeneities to project future urban scenarios. To illustrate the effectiveness of UrbanCA, we calibrate a CA model using artificial bee colony (ABC) to simulate the past urban patterns and predict future scenarios in Shanghai of China. The results show that UrbanCA under different scaling parameters is comparable to CA-Markov (as a reference model) concerning the accuracy of the end-state and change simulations, and is better than CA-Markov regarding the driving factor’s ability to explain the modeling outcomes. UrbanCA provides more choices compared to existing CA software packages, and the models are readily calibrated elsewhere to simulate the dynamic urban growth and assess the resulting natural and socioeconomic impacts. Numéro de notice : A2020-008 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1648813 Date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1080/13658816.2019.1648813 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94388
in International journal of geographical information science IJGIS > vol 34 n° 1 (January 2020) . - pp 74 - 97[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020011 RAB Revue Centre de documentation En réserve L003 Disponible Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules / Yongjiu Feng in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
[article]
Titre : Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur Année de publication : 2017 Article en page(s) : pp 1198 - 1219 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] algorithme génétique
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] base de règles
[Termes IGN] changement d'utilisation du sol
[Termes IGN] données GPS
[Termes IGN] jointure spatiale
[Termes IGN] Kiangsou (Chine)
[Termes IGN] modèle de simulation
[Termes IGN] prédiction
[Termes IGN] régression logistique
[Termes IGN] simulation
[Termes IGN] zone urbaineRésumé : (auteur) A novel generalized pattern search (GPS)-based cellular automata (GPS-CA) model was developed to simulate urban land-use change in a GIS environment. The model is built on a fitness function that computes the difference between the observed results produced from remote-sensing images and the simulated results produced by a general CA model. GPS optimization incorporating genetic algorithms (GAs) searches for the minimum difference, i.e. the smallest accumulated residuals, in fitting the CA transition rules. The CA coefficients captured by the GPS method have clear physical meanings that are closely associated with the dynamic mechanisms of land-use change. The GPS-CA model was applied to simulate urban land-use change in Kunshan City in the Yangtze River Delta from 2000 to 2015. The results show that the GPS method had a smaller root mean squared error (0.2821) than a logistic regression (LR) method (0.5256) in fitting the CA transition rules. The GPS-CA model thus outperformed the LR-CA model, with an overall accuracy improvement of 4.7%. As a result, the GPS-CA model should be a superior tool for modeling land-use change as well as predicting future scenarios in response to different conditions to support the sustainable urban development. Numéro de notice : A2017-244 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1287368 En ligne : http://dx.doi.org/10.1080/13658816.2017.1287368 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85180
in International journal of geographical information science IJGIS > vol 31 n° 5-6 (May-June 2017) . - pp 1198 - 1219[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2017031 RAB Revue Centre de documentation En réserve L003 Disponible