Détail de l'auteur
Auteur Joni-Kristian Kämäräinen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Urban 3D segmentation and modelling from street view images and LiDAR point clouds / Pouria Babahajiani in Machine Vision and Applications, sans n° ([01/06/2017])
[article]
Titre : Urban 3D segmentation and modelling from street view images and LiDAR point clouds Type de document : Article/Communication Auteurs : Pouria Babahajiani, Auteur ; Lixin Fan, Auteur ; Joni-Kristian Kämäräinen, Auteur ; Moncef Gabbouj, Auteur Année de publication : 2017 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] base de données urbaines
[Termes IGN] cartographie urbaine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] façade
[Termes IGN] image terrestre
[Termes IGN] milieu urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) 3D urban maps with semantic labels and metric information are not only essential for the next generation robots such autonomous vehicles and city drones, but also help to visualize and augment local environment in mobile user applications. The machine vision challenge is to generate accurate urban maps from existing data with minimal manual annotation. In this work, we propose a novel methodology that takes GPS registered LiDAR (Light Detection And Ranging) point clouds and street view images as inputs and creates semantic labels for the 3D points clouds using a hybrid of rule-based parsing and learning-based labelling that combine point cloud and photometric features. The rule-based parsing boosts segmentation of simple and large structures such as street surfaces and building facades that span almost 75% of the point cloud data. For more complex structures, such as cars, trees and pedestrians, we adopt boosted decision trees that exploit both structure (LiDAR) and photometric (street view) features. We provide qualitative examples of our methodology in 3D visualization where we construct parametric graphical models from labelled data and in 2D image segmentation where 3D labels are back projected to the street view images. In quantitative evaluation we report classification accuracy and computing times and compare results to competing methods with three popular databases: NAVTEQ True, Paris-Rue-Madame and TLS (terrestrial laser scanned) Velodyne. Numéro de notice : A2017-255 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00138-017-0845-3 En ligne : https://doi.org/10.1007/s00138-017-0845-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85269
in Machine Vision and Applications > sans n° [01/06/2017][article]