Détail de l'auteur
Auteur Georgios Panou |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Analytical and numerical methods of converting Cartesian to ellipsoidal coordinates / Georgios Panou in Journal of geodetic science, vol 11 n° 1 (January 2021)
[article]
Titre : Analytical and numerical methods of converting Cartesian to ellipsoidal coordinates Type de document : Article/Communication Auteurs : Georgios Panou, Auteur ; Romylos Korakitis, Auteur Année de publication : 2021 Article en page(s) : pp 111 - 121 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] coordonnées cartésiennes géocentriques
[Termes IGN] coordonnées ellipsoïdales
[Termes IGN] transformation de coordonnéesRésumé : (auteur) In this work, two analytical and two numerical methods of converting Cartesian to ellipsoidal coordinates of a point in space are presented. After slightly modifying a well-known exact analytical method, a new exact analytical method is developed. Also, two well-known numerical methods, which were developed for points exactly on the surface of a triaxial ellipsoid, are generalized for points in space. The four methods are validated with numerical experiments using an extensive set of points for the case of the Earth. Then, a theoretical and a numerical comparative assessment of the four methods is made. Furthermore, the new exact analytical method is applied for an almost oblate spheroid and for the case of the Moon and the results are compared. We conclude that, the generalized Panou and Korakitis’ numerical method, starting with approximate values from the new exact analytical method, is the best choice in terms of accuracy of the resulting ellipsoidal coordinates. Numéro de notice : A2021-983 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jogs-2020-0126 Date de publication en ligne : 04/12/2021 En ligne : https://doi.org/10.1515/jogs-2020-0126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100982
in Journal of geodetic science > vol 11 n° 1 (January 2021) . - pp 111 - 121[article]The direct geodesic problem and an approximate analytical solution in Cartesian coordinates on a triaxial ellipsoid / Georgios Panou in Journal of applied geodesy, vol 14 n° 2 (April 2020)
[article]
Titre : The direct geodesic problem and an approximate analytical solution in Cartesian coordinates on a triaxial ellipsoid Type de document : Article/Communication Auteurs : Georgios Panou, Auteur ; Romylos Korakitis, Auteur Année de publication : 2020 Article en page(s) : pp 205 – 213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] coordonnées cartésiennes
[Termes IGN] coordonnées ellipsoïdales
[Termes IGN] données géodésiques
[Termes IGN] ellipsoïde (géodésie)
[Termes IGN] géométrie analytique
[Termes IGN] série de Taylor
[Termes IGN] sphèroïde
[Termes IGN] transformation de coordonnéesRésumé : (auteur) In this work, the direct geodesic problem in Cartesian coordinates on a triaxial ellipsoid is solved by an approximate analytical method. The parametric coordinates are used and the parametric to Cartesian coordinates conversion and vice versa are presented. The geodesic equations on a triaxial ellipsoid in Cartesian coordinates are solved using a Taylor series expansion. The solution provides the Cartesian coordinates and the angle between the line of constant v and the geodesic at the end point. An extensive data set of geodesics, previously studied with a numerical method, is used in order to validate the presented analytical method in terms of stability, accuracy and execution time. We conclude that the presented method is suitable for a triaxial ellipsoid with small eccentricities and an accurate solution is obtained. At a similar accuracy level, this method is about thirty times faster than the corresponding numerical method. Finally, the presented method can also be applied in the degenerate case of an oblate spheroid, which is extensively used in geodesy. Numéro de notice : A2020-218 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2019-0066 Date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1515/jag-2019-0066 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94911
in Journal of applied geodesy > vol 14 n° 2 (April 2020) . - pp 205 – 213[article]Geodesic equations and their numerical solution in Cartesian coordinates on a triaxial ellipsoid / Georgios Panou in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Geodesic equations and their numerical solution in Cartesian coordinates on a triaxial ellipsoid Type de document : Article/Communication Auteurs : Georgios Panou, Auteur ; Romylos Korakitis, Auteur Année de publication : 2019 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] constante
[Termes IGN] coordonnées cartésiennes géocentriques
[Termes IGN] coordonnées ellipsoïdales
[Termes IGN] problème des valeurs limites
[Termes IGN] transformation de coordonnéesRésumé : (auteur) In this work, the geodesic equations and their numerical solution in Cartesian coordinates on an oblate spheroid, presented by Panou and Korakitis (2017), are generalized on a triaxial ellipsoid. A new exact analytical method and a new numerical method of converting Cartesian to ellipsoidal coordinates of a point on a triaxial ellipsoid are presented. An extensive test set for the coordinate conversion is used, in order to evaluate the performance of the two methods. The direct geodesic problem on a triaxial ellipsoid is described as an initial value problem and is solved numerically in Cartesian coordinates. The solution provides the Cartesian coordinates and the angle between the line of constant λ and the geodesic, at any point along the geodesic. Also, the Liouville constant is computed at any point along the geodesic, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to demonstrate the validity of the numerical method for the geodesic problem. We conclude that a complete, stable and precise solution of the problem is accomplished. Numéro de notice : A2019-407 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jogs-2019-0001 En ligne : https://doi.org/10.1515/jogs-2019-0001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93524
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 1 - 12[article]Geodesic equations and their numerical solutions in geodetic and cartesian coordinates on an oblate spheroid / Georgios Panou in Journal of geodetic science, vol 7 n° 1 (February 2017)
[article]
Titre : Geodesic equations and their numerical solutions in geodetic and cartesian coordinates on an oblate spheroid Type de document : Article/Communication Auteurs : Georgios Panou, Auteur ; Romylos Korakitis, Auteur Année de publication : 2017 Article en page(s) : pp 31 - 42 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] coordonnées cartésiennes
[Termes IGN] coordonnées géodésiques
[Termes IGN] géométrie différentielle
[Termes IGN] problème des valeurs limites
[Termes IGN] sphèroïde
[Termes IGN] système de coordonnéesRésumé : (Auteur) The direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically using both geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical method. The solution provides the coordinates and the azimuths at any point along the geodesic. The Clairaut constant is not used for the solution but it is computed, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to evaluate the performance of the method in each coordinate system. The results for the direct geodesic problem are validated by comparison to Karney’s method. We conclude that a complete, stable, precise, accurate and fast solution of the problem in Cartesian coordinates is accomplished. Numéro de notice : A2017-300 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jogs-2017-0004 En ligne : https://doi.org/10.1515/jogs-2017-0004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85335
in Journal of geodetic science > vol 7 n° 1 (February 2017) . - pp 31 - 42[article]