Détail de l'auteur
Auteur Zhou Zhao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping / Wei Chen in Geocarto international, vol 32 n° 4 (April 2017)
[article]
Titre : A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Wei Chen, Auteur ; Hamid Reza Pourghasemi, Auteur ; Zhou Zhao, Auteur Année de publication : 2017 Article en page(s) : pp 367 - 385 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] analyse comparative
[Termes IGN] ArcGIS
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification par réseau neuronal
[Termes IGN] effondrement de terrain
[Termes IGN] régression logistique
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (Auteur) The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties. Numéro de notice : A2017-271 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1140824 Date de publication en ligne : 22/03/2016 En ligne : http://doi.org/10.1080/10106049.2016.1140824 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85297
in Geocarto international > vol 32 n° 4 (April 2017) . - pp 367 - 385[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017041 RAB Revue Centre de documentation En réserve L003 Disponible