Détail de l'auteur
Auteur Mohammed I. Al-Qinna |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
TM-Based SOC models augmented by auxiliary data for carbon crediting programs in semi-arid environments / Salahuddin M. Jaber in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 6 (June 2017)
[article]
Titre : TM-Based SOC models augmented by auxiliary data for carbon crediting programs in semi-arid environments Type de document : Article/Communication Auteurs : Salahuddin M. Jaber, Auteur ; Mohammed I. Al-Qinna, Auteur Année de publication : 2017 Article en page(s) : pp 447 - 457 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] données auxiliaires
[Termes IGN] image Landsat-TM
[Termes IGN] Jordanie
[Termes IGN] matière organique
[Termes IGN] prédiction
[Termes IGN] sol
[Termes IGN] teneur en carbone
[Termes IGN] zone semi-arideRésumé : (Auteur) This study aimed at testing the hypothesis that augmenting Landsat TM-based models for predicting soil organic carbon (SOC) with auxiliary data about variables that might affect the spatial distribution of SOC might improve the predictability of these models in the Zarqa Basin in Jordan (a typical semi-arid watershed) and enable them to be used for implementing carbon crediting programs in semi-arid environments. Six modeling procedures, namely stepwise regression, partial least squares, recursive partitioning analysis, screening regression analysis, artificial neural networks, and combined models, were calibrated and validated for the basin and for the land cover types that exist in the basin. Although none of the developed models was powerful for predicting SOC, artificial neural networks models were more applicable specifically in agricultural lands. However, the margins of error associated with the best models were high, and hence hindered the applicability of these models in carbon crediting programs in semi-arid environments. Numéro de notice : A2017-350 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.6.447 En ligne : https://doi.org/10.14358/PERS.83.6.447 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85635
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 6 (June 2017) . - pp 447 - 457[article]