Détail de l'auteur
Auteur Raffaello Giannini |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling Mediterranean forest structure using airborne laser scanning data / Francesca Bottalico in International journal of applied Earth observation and geoinformation, vol 57 (May 2017)
[article]
Titre : Modeling Mediterranean forest structure using airborne laser scanning data Type de document : Article/Communication Auteurs : Francesca Bottalico, Auteur ; Gherardo Chirici, Auteur ; Raffaello Giannini, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 145 - 153 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] complexité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt méditerranéenne
[Termes IGN] intervalle de confiance
[Termes IGN] Italie
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters.
Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS estimator with standard error of 0.69 m.Numéro de notice : A2017-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2016.12.013 En ligne : https://doi.org/10.1016/j.jag.2016.12.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85787
in International journal of applied Earth observation and geoinformation > vol 57 (May 2017) . - pp 145 - 153[article]