Détail de l'auteur
Auteur Han Hu |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling / Han Hu in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)
[article]
Titre : Semi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling Type de document : Article/Communication Auteurs : Han Hu, Auteur ; Xinrong Liang, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 215 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] fenêtre (bâtiment)
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] photographie aérienne oblique
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Deep learning methods are typically data-hungry and require many labelled samples. Unfortunately, the amount of effort required to label the data has significantly hindered the application of deep learning methods, especially in 3D modelling tasks requiring heterogeneous samples. This paper proposes a semi-supervised adversarial recognition strategy embedded in the inverse procedural modelling engine to reduce data annotation costs for learning to model 3D façades. Beginning with textured level-of-details models, we use convolutional neural networks to recognise the types and estimate the parameters of windows from image patches. The window types and parameters are then assembled into the procedural grammar. A simple procedural engine is built inside off-the-shelf 3D modelling software, producing fine-grained window geometries. To obtain a useful model from a few labelled samples, we leverage a generative adversarial network to train the feature extractor in a semi-supervised manner. The adversarial training strategy exploits the unlabelled data to stabilise the training phase. Experiments using publicly available façade image datasets reveal that the proposed methods can improve classification accuracy and parameter estimation by approximately 10% and 50%, respectively, under the same network structure. In addition, performance gains are more pronounced when testing against unseen data featuring different façade styles. Numéro de notice : A2022-666 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.014 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101528
in ISPRS Journal of photogrammetry and remote sensing > vol 192 (October 2022) . - pp 215 - 231[article]Structure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Structure-aware completion of photogrammetric meshes in urban road environment Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Qisen Shang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de partie cachée
[Termes IGN] espace urbain
[Termes IGN] image aérienne oblique
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction de route
[Termes IGN] réseau routier
[Termes IGN] texture d'image
[Termes IGN] véhicule automobileRésumé : (auteur) Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, photogrammetric meshes suffer from severe texture problems, particularly in typical road areas, owing to occlusion. This paper proposes a structure-aware completion approach to improve mesh quality by seamlessly removing undesired vehicles. Specifically, a discontinuous texture atlas is first integrated into a continuous screen space by rendering trough a graphics pipeline. The rendering also records the necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, namely, Faster RCNN. Subsequently, the masked regions are completed, guided by the linear structures and regularities in the road region; this is implemented based on PatchMatch. Finally, the completed rendered image is deintegrated to the original texture atlas, and the triangles for the vehicles are also flattened so that improved meshes can be obtained. Experimental evaluation and analysis are conducted on three datasets, which were captured with different sensors and ground sample distances. The results demonstrate that the proposed method can produce quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods, and an ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method can also handle tiled mesh models for large-scale scenes. Code and datasets are available at the project website. Numéro de notice : A2021-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.010 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97312
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 56 - 70[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Leveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
[article]
Titre : Leveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Zhendong Wang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 26 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] appariement de points
[Termes IGN] éclairage
[Termes IGN] image aérienne
[Termes IGN] image terrestre
[Termes IGN] maillage
[Termes IGN] milieu urbain
[Termes IGN] modèle stéréoscopique
[Termes IGN] séparateur à vaste marge
[Termes IGN] valeur aberranteRésumé : (auteur) Integration of aerial and ground images has been proved as an efficient approach to enhance the surface reconstruction in urban environments. However, as the first step, the feature point matching between aerial and ground images is remarkably difficult, due to the large differences in viewpoint and illumination conditions. Previous studies based on geometry-aware image rectification have alleviated this problem, but the performance and convenience of this strategy are still limited by several flaws, e.g. quadratic image pairs, segregated extraction of descriptors and occlusions. To address these problems, we propose a novel approach: leveraging photogrammetric mesh models for aerial-ground image matching. The methods have linear time complexity with regard to the number of images. It explicitly handles low overlap using multi-view images. The proposed methods can be directly injected into off-the-shelf structure-from-motion (SFM) and multi-view stereo (MVS) solutions. First, aerial and ground images are reconstructed separately and initially co-registered through weak georeferencing data. Second, aerial models are rendered to the initial ground views, in which color, depth and normal images are obtained. Then, feature matching between synthesized and ground images are conducted through descriptor searching and geometry-constrained outlier removal. Finally, oriented 3D patches are formulated using the synthesized depth and normal images and the correspondences are propagated to the aerial views through patch-based matching. Experimental evaluations using five datasets reveal satisfactory performance of the proposed methods in aerial-ground image matching, which succeeds in all of the ten challenging pairs compared to only three for the second best. In addition, incorporation of existing SFM and MVS solutions enables more complete reconstruction results, with better internal stability. Numéro de notice : A2020-351 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.024 Date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95234
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 26 - 40[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Object-based incremental registration of terrestrial point clouds in an urban environment / Xuming Ge in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Object-based incremental registration of terrestrial point clouds in an urban environment Type de document : Article/Communication Auteurs : Xuming Ge, Auteur ; Han Hu, Auteur Année de publication : 2020 Article en page(s) : pp 218 - 232 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] compensation par moindres carrés
[Termes IGN] conception orientée objet
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] primitive géométrique
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) Registration of terrestrial point clouds is essential for large-scale urban applications. The robustness, accuracy, and runtime are generally given the highest priority in the design of appropriate algorithms. Most approaches that target general scenarios can only fulfill some of these factors, that is, robustness and accuracy come at the cost of increased runtime and vice versa. This paper proposes an object-based incremental registration strategy that accomplishes all of these objectives without the need for artificial targets, aiming at a specific scenario, the urban environment. The key is to decompose the degrees of freedom for the SE(3) transformation to three separate but closely related steps, considering that scanners are generally leveled in urban scenes: (1) 2D transformation with matches from line primitives, (2) vertical offset compensation by robust least-squares optimization, and (3) full SE(3) least-squares refinement using uniformly selected local patches. The robustness is prioritized in the whole pipeline, as structured first by a primitive-based registration and two least-squares optimizations with robust estimations that do not require specific keypoints. An object-based strategy for terrestrial point clouds is used to increase the reliability of the first step by the line primitives, which significantly reduces the search space without affecting the recall ratio. The least-squares optimization contributes to achieve a global optimum for the accurate registration. The three coupling steps are also more efficient than segregated coarse-to-fine registration. Experimental evaluations for point clouds acquired in both a metropolis and in old-style cities reveal that the proposed methods are superior to or on par with the state-of-the-art in robustness, accuracy, and runtime. In addition, the methods are also agnostic to the primitives adopted. Numéro de notice : A2020-066 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.020 Date de publication en ligne : 29/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94584
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 218 - 232[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas / Bo Wu in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
[article]
Titre : Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Linfu Xie, Auteur ; Han Hu, Auteur ; Qing Zhu, Auteur ; Eric Yau, Auteur Année de publication : 2018 Article en page(s) : pp 119 - 132 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] compensation par faisceaux
[Termes IGN] Hong-Kong
[Termes IGN] image aérienne oblique
[Termes IGN] image terrestre
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modélisation 3D
[Termes IGN] Rhénanie du Nord-Wesphalie (Allemagne)
[Termes IGN] zone urbaineRésumé : (Auteur) Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas. Numéro de notice : A2018-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.03.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.03.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89542
in ISPRS Journal of photogrammetry and remote sensing > vol 139 (May 2018) . - pp 119 - 132[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2018051 RAB Revue Centre de documentation En réserve L003 Disponible Robust point cloud classification based on multi-level semantic relationships for urban scenes / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)Permalink