Détail de l'auteur
Auteur Sorin C. Popescu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones / Lonesome Malambo in Remote sensing of environment, vol 266 (December 2021)
[article]
Titre : Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones Type de document : Article/Communication Auteurs : Lonesome Malambo, Auteur ; Sorin C. Popescu, Auteur Année de publication : 2021 Article en page(s) : n° 112711 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biome
[Termes IGN] canopée
[Termes IGN] données altimétriques
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écorégion
[Termes IGN] Etats-Unis
[Termes IGN] hauteur des arbres
[Termes IGN] photon
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (auteur) Despite its critical importance to carbon storage modeling, forest vertical structure remains poorly characterized over large areas. Canopy height estimates from current satellite missions such as ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) offer promise to close this knowledge gap, but their validation is critically important to inform their measurement uncertainties and scientific utility. Using existing airborne laser scanning (ALS) data, the agreement of a variety of terrain and aboveground canopy height metrics including summary height statistics and percentiles, from ICESat-2’ Land, Water and Vegetation Elevation product (ATL08) product was assessed in 12 sites across six major biomes in the United States. The agreement between ATL08 and ALS heights was assessed using the mean bias (Bias, ATL08 – ALS), the mean absolute error (MAE) and their percent equivalents, percent bias (pBias) and percent MAE (pMAE), respectively. In general, the agreement between ATL08 and ALS terrain heights was high (Bias 0.18 m, pBias 0.1%) while canopy heights showed lower agreement (Bias −1.71 m, pBias −15.9%). Analyses by biome, time of acquisition and beam strength of the ICESat-2 photon data also showed generally higher agreement for ATL08 terrain than canopy heights. Analyses also showed the performance of ATL08 heights varied with canopy cover with ATL08 terrain heights showing the best agreement when canopy cover was between 40 and 70% while the best performance for ATL08 canopy heights was observed when canopy cover was greater than 80%. This observation, coupled with analyses by biome, indicate that ATL08 canopy heights are more suitable in relatively dense canopy environments such as conifer and broadleaf forests than relatively sparse environments such a temperate grassland and Savannas. Higher level canopy height percentiles (95th and 98th) showed higher agreement (mean Bias −12.5%) with ALS heights than lower percentiles (minimum, 25th, mean pBias ~39.2%). These findings indicate that ATL08 canopy heights show more promise for routine canopy height characterization using the 95th and 98% percentiles but is limited in characterizing intermediate vertical structure. The observed performance differences between ATL08 terrain and canopy heights are attributed to differences in photon sampling rates over terrain and canopy surfaces which, compounded with background noise in ICESat-2 photon data, led to different effectiveness for ATL08 processing routines in filtering terrain and off-terrain points. This assessment of the impact of a variety of factors provides the vegetation community with an understanding of the capabilities and limitations of height estimates from the ICESat-2 ATL08 product. Numéro de notice : A2021-922 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112711 Date de publication en ligne : 24/09/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112711 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99277
in Remote sensing of environment > vol 266 (December 2021) . - n° 112711[article]Gold – A novel deconvolution algorithm with optimization for waveform LiDAR processing / Tan Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)
[article]
Titre : Gold – A novel deconvolution algorithm with optimization for waveform LiDAR processing Type de document : Article/Communication Auteurs : Tan Zhou, Auteur ; Sorin C. Popescu, Auteur ; Keith Krause, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 131 - 150 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] déconvolution
[Termes IGN] forme d'onde
[Termes IGN] optimisation (mathématiques)
[Termes IGN] traitement du signalRésumé : (Auteur) Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: (1) direct decomposition, (2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms – the Richardson-Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from the corresponding reference data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference ( Numéro de notice : A2017-349 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.021 En ligne : https://dx.doi.org/10.1016/j.isprsjprs.2017.04.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85622
in ISPRS Journal of photogrammetry and remote sensing > vol 129 (July 2017) . - pp 131 - 150[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt