Détail de l'auteur
Auteur Derek Hoiem |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Complete 3D scene parsing from an RGBD image / Chuhang Zou in International journal of computer vision, vol 127 n° 2 (February 2019)
[article]
Titre : Complete 3D scene parsing from an RGBD image Type de document : Article/Communication Auteurs : Chuhang Zou, Auteur ; Ruiqi Guo, Auteur ; Zhizhong Li, Auteur ; Derek Hoiem, Auteur Année de publication : 2019 Article en page(s) : pp 143 - 162 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cohérence géométrique
[Termes IGN] compréhension de l'image
[Termes IGN] image isolée
[Termes IGN] image RVB
[Termes IGN] reconstruction d'objet
[Termes IGN] scène 3DRésumé : (Auteur) One major goal of vision is to infer physical models of objects, surfaces, and their layout from sensors. In this paper, we aim to interpret indoor scenes from one RGBD image. Our representation encodes the layout of orthogonal walls and the extent of objects, modeled with CAD-like 3D shapes. We parse both the visible and occluded portions of the scene and all observable objects, producing a complete 3D parse. Such a scene interpretation is useful for robotics and visual reasoning, but difficult to produce due to the well-known challenge of segmentation, the high degree of occlusion, and the diversity of objects in indoor scenes. We take a data-driven approach, generating sets of potential object regions, matching to regions in training images, and transferring and aligning associated 3D models while encouraging fit to observations and spatial consistency. We use support inference to aid interpretation and propose a retrieval scheme that uses convolutional neural networks to classify regions and retrieve objects with similar shapes. We demonstrate the performance of our method on our newly annotated NYUd v2 dataset (Silberman et al., in: Computer vision-ECCV, 2012, pp 746–760, 2012) with detailed 3D shapes. Numéro de notice : A2018-598 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-018-1133-z Date de publication en ligne : 21/11/2018 En ligne : https://doi.org/10.1007/s11263-018-1133-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92525
in International journal of computer vision > vol 127 n° 2 (February 2019) . - pp 143 - 162[article]