Détail de l'auteur
Auteur Chengjiang Long |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
A joint Gaussian process model for active visual recognition with expertise estimation in crowdsourcing / Chengjiang Long in International journal of computer vision, vol 116 n° 2 (15th January 2016)
[article]
Titre : A joint Gaussian process model for active visual recognition with expertise estimation in crowdsourcing Type de document : Article/Communication Auteurs : Chengjiang Long, Auteur ; Gang Hua, Auteur ; Ashish Kapoor, Auteur Année de publication : 2016 Article en page(s) : pp 136 - 160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] distribution de Gauss
[Termes IGN] inférence
[Termes IGN] production participative
[Termes IGN] reconnaissance d'objetsRésumé : (auteur) We present a noise resilient probabilistic model for active learning of a Gaussian process classifier from crowds, i.e., a set of noisy labelers. It explicitly models both the overall label noise and the expertise level of each individual labeler with two levels of flip models. Expectation propagation is adopted for efficient approximate Bayesian inference of our probabilistic model for classification, based on which, a generalized EM algorithm is derived to estimate both the global label noise and the expertise of each individual labeler. The probabilistic nature of our model immediately allows the adoption of the prediction entropy for active selection of data samples to be labeled, and active selection of high quality labelers based on their estimated expertise to label the data. We apply the proposed model for four visual recognition tasks, i.e., object category recognition, multi-modal activity recognition, gender recognition, and fine-grained classification, on four datasets with real crowd-sourced labels from the Amazon Mechanical Turk. The experiments clearly demonstrate the efficacy of the proposed model. In addition, we extend the proposed model with the Predictive Active Set Selection Method to speed up the active learning system, whose efficacy is verified by conducting experiments on the first three datasets. The results show our extended model can not only preserve a higher accuracy, but also achieve a higher efficiency. Numéro de notice : A2016--137 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007%2Fs11263-015-0834-9 En ligne : https://doi.org/10.1007/s11263-015-0834-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85903
in International journal of computer vision > vol 116 n° 2 (15th January 2016) . - pp 136 - 160[article]