Détail de l'auteur
Auteur Bin Zhao |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A framework for group converging pattern mining using spatiotemporal trajectories / Bin Zhao in Geoinformatica, vol 24 n° 4 (October 2020)
[article]
Titre : A framework for group converging pattern mining using spatiotemporal trajectories Type de document : Article/Communication Auteurs : Bin Zhao, Auteur ; Xintao Liu, Auteur ; Jinping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 745 - 776 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] base de données d'objets mobiles
[Termes IGN] base de données spatiotemporelles
[Termes IGN] comportement
[Termes IGN] convergence
[Termes IGN] exploration de données géographiques
[Termes IGN] jointure spatiale
[Termes IGN] objet mobile
[Termes IGN] reconnaissance de formesRésumé : (Auteur) A group event such as human and traffic congestion can be very roughly divided into three stages: converging stage before congestion, gathered stage when congestion happens, and dispersing stage that congestion disappears. It is of great interest in modeling and identifying converging behaviors before gathered events actually happen, which helps to proactively predict and handle potential public incidents such as serious stampedes. However, most of existing literature put too much emphasis on the second stage, only a few of them is dedicated to the first stage. In this paper, we propose a novel group pattern, namely converging, which refers to a group of moving objects converging from different directions during a certain period before gathered. To discover efficiently such converging patterns, we develop a framework for converging pattern mining (CPM) by examining how moving objects form clusters and the process of the “cluster containment”. The framework consists of three phases: snapshot cluster discovery phase, cluster containment join phase, and converging detection phase. As cluster containment mining is the key step, we develop three algorithms to discover cluster containment matches: a containment-join-algorithm, called SSCCJ, by using spatial proximity; a signature tree-based cluster-containment-join-algorithm, called STCCJ, which takes advantage of the cluster containment relations and signature techniques to filter enormous unqualified candidates in an efficient and effective way; and third, to keep the advantages of the above algorithms while avoiding their flaws, we further propose a signature quad-tree based cluster-containment-join algorithm, called SQTCCJ, which can identify efficiently matches by considering cluster spatial proximity as well as containment relations simultaneously. To assess the proposed methods, we redefine two evaluation metrics based on the concept of “Precision and Recall” in the field of information retrieval and the characteristics of converging patterns. We also propose a new indicator for measuring the duration of the converging stage in a group event. Finally, the effectiveness of the CPM and the efficiency of the mining algorithms are evaluated using three types of trajectory datasets, and the results show that the SQTCCJ algorithm demonstrates a superior performance. Numéro de notice : A2020-494 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00404-z Date de publication en ligne : 25/04/2020 En ligne : https://doi.org/10.1007/s10707-020-00404-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96114
in Geoinformatica > vol 24 n° 4 (October 2020) . - pp 745 - 776[article]Decomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach / Feng Ming in Advances in space research, vol 64 n°5 (1 September 2019)
[article]
Titre : Decomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach Type de document : Article/Communication Auteurs : Feng Ming, Auteur ; Yuanxi Yang, Auteur ; Anmin Zeng, Auteur ; Bin Zhao, Auteur Année de publication : 2019 Article en page(s) : pp Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme du recuit simulé
[Termes IGN] bruit (théorie du signal)
[Termes IGN] bruit blanc
[Termes IGN] bruit rose
[Termes IGN] données GPS
[Termes IGN] filtre de Kalman
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] série temporelle
[Termes IGN] variation saisonnière
[Vedettes matières IGN] Traitement de données GNSSNuméro de notice : A2019-399 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2019.05.049 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1016/j.asr.2019.05.049 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93519
in Advances in space research > vol 64 n°5 (1 September 2019) . - pp[article]Sparse output coding for scalable visual recognition / Bin Zhao in International journal of computer vision, vol 119 n° 1 (August 2016)
[article]
Titre : Sparse output coding for scalable visual recognition Type de document : Article/Communication Auteurs : Bin Zhao, Auteur ; Eric P. Xing, Auteur Année de publication : 2016 Article en page(s) : pp 60 - 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification
[Termes IGN] codage
[Termes IGN] décodage
[Termes IGN] matrice
[Termes IGN] reconnaissance d'objetsRésumé : (auteur) Many vision tasks require a multi-class classifier to discriminate multiple categories, on the order of hundreds or thousands. In this paper, we propose sparse output coding, a principled way for large-scale multi-class classification, by turning high-cardinality multi-class categorization into a bit-by-bit decoding problem. Specifically, sparse output coding is composed of two steps: efficient coding matrix learning with scalability to thousands of classes, and probabilistic decoding. Empirical results on object recognition and scene classification demonstrate the effectiveness of our proposed approach. Numéro de notice : A2016--152 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-015-0839-4 En ligne : https://doi.org/10.1007/s11263-015-0839-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85920
in International journal of computer vision > vol 119 n° 1 (August 2016) . - pp 60 - 75[article]