Détail de l'auteur
Auteur Adrien Bartoli |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Generalizing the prediction sum of squares statistic and formula, application to linear fractional image warp and surface fitting / Adrien Bartoli in International journal of computer vision, vol 122 n° 1 (March 2017)
[article]
Titre : Generalizing the prediction sum of squares statistic and formula, application to linear fractional image warp and surface fitting Type de document : Article/Communication Auteurs : Adrien Bartoli, Auteur Année de publication : 2017 Article en page(s) : pp 61 – 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] carte de profondeur
[Termes IGN] point d'appui
[Termes IGN] reconstruction d'image
[Termes IGN] reconstruction d'objet
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] validation des donnéesRésumé : (auteur) The prediction sum of squares statistic uses the principle of leave-one-out cross-validation in linear least squares regression. It is computationally attractive, as it can be computed non-iteratively. However, it has limitations: it does not handle coupled measurements, which should be held out simultaneously, and is specific to the principle of leave-one-out, which is known to overfit when used for selecting a model’s complexity. We propose multiple-exclusion PRESS (MEXPRESS), which generalizes PRESS to coupled measurements and other types of cross-validation, while retaining computational efficiency with the non-iterative MEXPRESS formula. Using MEXPRESS, various strategies to resolve overfitting can be efficiently implemented. The core principle is to exclude training data too ‘close’ or too ‘similar’ to the validation data. We show that this allows one to select the number of control points automatically in three cases: (i) the estimation of linear fractional warps for dense image registration from point correspondences, (ii) surface reconstruction from a dense depth-map obtained by a depth sensor and (iii) surface reconstruction from a sparse point cloud obtained by shape-from-template. Numéro de notice : A2017-277 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007%2Fs11263-016-0954-x En ligne : https://doi.org/10.1007/s11263-016-0954-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85922
in International journal of computer vision > vol 122 n° 1 (March 2017) . - pp 61 – 83[article]