Détail de l'auteur
Auteur Asem Khmag |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Denoising of natural images through robust wavelet thresholding and genetic programming / Asem Khmag in The Visual Computer, vol 33 n°9 (September 2017)
[article]
Titre : Denoising of natural images through robust wavelet thresholding and genetic programming Type de document : Article/Communication Auteurs : Asem Khmag, Auteur ; Abd Rahman Ramli, Auteur ; S.A.R. Al-haddad, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1141 - 1154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] bruit blanc
[Termes IGN] filtrage du bruit
[Termes IGN] ondelette
[Termes IGN] seuillage d'imageRésumé : (auteur) Digital images play an essential role in analysis tasks that can be applied in various knowledge domains, including medicine, meteorology, geology, and biology. Such images can be degraded by noise during the process of acquisition, transmission, storage, or compression. The use of local filters in image restoration may generate artifacts when these filters are not well adapted to the image content as a result of the heuristic optimization of local filters. Denoising methods based on learning procedure are more capable than parametric filters for addressing the conflicts between noise suppression and artifact reduction. In this study, we present a nonlinear filtering method based on a two-step switching scheme to remove both salt-and-pepper and additive white Gaussian noises. In the switching scheme, two cascaded detectors are used to detect noise, and two corresponding estimators are employed to effectively and efficiently filter the noise in an image. In the process of training, a method according to patch clustering is utilized, and genetic programming (GP) is subsequently applied to determine the optimum filter (wavelet-domain filter) for each individual cluster, while in testing part, the optimum filter trained beforehand by GP is recovered and used on the inputted corrupted patch. This adaptive structure is employed to cope with several noise types. Experimental and comparative analysis results show that the denoising performance of the proposed method is superior to that of existing denoising methods as per both quantitative and qualitative assessments. Numéro de notice : A2017-407 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-016-1273-5 En ligne : https://doi.org/10.1007/s00371-016-1273-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86288
in The Visual Computer > vol 33 n°9 (September 2017) . - pp 1141 - 1154[article]