Détail de l'auteur
Auteur Simone Pettinato |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Combining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data / Emanuele Santi in Remote sensing, Vol 11 n° 20 (October-2 2019)
[article]
Titre : Combining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data Type de document : Article/Communication Auteurs : Emanuele Santi, Auteur ; Mohammed Dabboor, Auteur ; Simone Pettinato, Auteur ; Simonetta Paloscia, Auteur Année de publication : 2019 Article en page(s) : 18 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] bande C
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] Manitoba (Canada)
[Termes IGN] polarimétrie
[Termes IGN] polarisation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) This research aimed at exploiting the joint use of machine learning and polarimetry for improving the retrieval of surface soil moisture content (SMC) from synthetic aperture radar (SAR) acquisitions at C-band. The study was conducted on two agricultural areas in Canada, for which a series of RADARSAT-2 (RS2) images were available along with direct measurements of SMC from in situ stations. The analysis confirmed the sensitivity of RS2 backscattering (O°) to SMC. The comparison of SMC with the compact polarimetry (CP) parameters, computed from the RS2 acquisitions by the CP data simulator, pointed out that some CP parameters had a sensitivity to SMC equal or better than O°, with correlation coe?cients up to R ' 0.4. Based on these results, the potential of machine learning (ML) for SMC retrieval was exploited by implementing and testing on the available data an artificial neural network (ANN) algorithm. The algorithm was implemented using several combinations of O° and CP parameters. Validation results of the algorithm with in situ observations confirmed the promising capabilities of the ML techniques for SMC monitoring. Furthermore, results pointed out the potential of CP in improving the SMC retrieval accuracy, especially when used in combination with linearly polarized O°. Depending on the considered input combination, the ANN algorithm was able to estimate SMC with Root Mean Square Error (RMSE) between 3% and 7% of SMC and R between 0.7 and 0.9. Numéro de notice : A2019-555 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11202451 Date de publication en ligne : 22/10/2019 En ligne : https://doi.org/10.3390/rs11202451 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94210
in Remote sensing > Vol 11 n° 20 (October-2 2019) . - 18 p.[article]The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas / Emanuele Santi in Remote sensing of environment, vol 200 (October 2017)
[article]
Titre : The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas Type de document : Article/Communication Auteurs : Emanuele Santi, Auteur ; Simonetta Paloscia, Auteur ; Simone Pettinato, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 63 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] biomasse forestière
[Termes IGN] capacité de stockage
[Termes IGN] classification par réseau neuronal
[Termes IGN] forêt méditerranéenne
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Envisat-ASAR
[Termes IGN] image radar moirée
[Termes IGN] modèle de transfert radiatif
[Termes IGN] production primaire brute
[Termes IGN] Toscane (Italie)Résumé : (auteur) The extraction of forest information from SAR images is particularly complex in Mediterranean areas, since they are characterized by high spatial fragmentation and heterogeneity. We have investigated the use of multi-frequency SAR data from different sensors (ALOS/PALSAR and ENVISAT/ASAR) for estimating forest biomass in two test areas in Central Italy (San Rossore and Molise), where detailed in-situ measurements and Airborne Laser Scanning (ALS) data were available. The study focused on the estimation of growing stock volume (GS, in m3/ha) by using an inversion algorithm based on artificial neural networks (ANN). The ANN algorithm was first appropriately trained using the available GS estimates obtained from ALS data. The potential of this algorithm was then improved through the innovative use of a simulated dataset, generated by a forward electromagnetic model based on the Radiative Transfer Theory (RTT). The algorithm is able to merge SAR data at L and C bands for predicting GS in diversified Mediterranean environments. The performed analyses indicated that GS was correctly estimated by integrating information from L and C bands on both test areas, with the following statistics: R > 0.97 and RMSE = 28.5 m3/ha for the independent test, and R = 0.86 and RMSE ≈ 77 m3/ha for the final independent validation, the latter performed on the forest stands of both areas not included in the ALS acquisitions and where conventional measurements were available. The research then illustrates the potential of using the obtained GS estimates from SAR data to drive the simulations of forest net primary production (NPP). This experiment produced spatially explicit estimates of GS current annual increments that are slightly less accurate than those obtained from ground observations (R = 0.75 and RMSE ≈ 1.5 m3/ha/year). Numéro de notice : A2017-415 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2017.07.038 En ligne : https://doi.org/10.1016/j.rse.2017.07.038 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86307
in Remote sensing of environment > vol 200 (October 2017) . - pp 63 - 73[article]