Détail de l'auteur
Auteur Christina Oikonomou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Determination of the ionospheric foF2 using a stand-alone GPS receiver / Dudy D Wijaya in Journal of geodesy, vol 91 n° 9 (September 2017)
[article]
Titre : Determination of the ionospheric foF2 using a stand-alone GPS receiver Type de document : Article/Communication Auteurs : Dudy D Wijaya, Auteur ; Haris Haralambous, Auteur ; Christina Oikonomou, Auteur ; Wedyanto Kuntjoro, Auteur Année de publication : 2017 Article en page(s) : pp 1117 – 1133 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] filtre de Kalman
[Termes IGN] gradient ionosphèrique
[Termes IGN] International Reference Ionosphere
[Termes IGN] ionosphère
[Termes IGN] récepteur GPS
[Termes IGN] sonde spatiale
[Termes IGN] teneur totale en électronsRésumé : (auteur) The critical frequency of ionospheric F2 layer (foF2) is a measure of the highest frequency of radio signal that may be reflected back by the F2 layer, and it is associated with ionospheric peak electron density in the F2 layer. Accurate long-term foF2 variations are usually derived from ionosonde observations. In this paper, we propose a new method to observe foF2 using a stand-alone global positioning system (GPS) receiver. The proposed method relies on the mathematical equation that relates foF2 to GPS observations. The equation is then implemented in the Kalman filter algorithm to estimate foF2 at every epoch of the observation (30-s rate). Unlike existing methods, the proposed method does not require any additional information from ionosonde observations and does not require any network of GPS receivers. It only requires as inputs the ionospheric scale height and the modeled plasmaspheric electron content, which practically can be derived from any existing ionospheric/plasmaspheric model. We applied the proposed method to estimate long-term variations of foF2 at three GPS stations located at the northern hemisphere (NICO, Cyprus), the southern hemisphere (STR1, Australia) and the south pole (SYOG, Antarctic). To assess the performance of the proposed method, we then compared the results against those derived by ionosonde observations and the International Reference Ionosphere (IRI) 2012 model. We found that, during the period of high solar activity (2011–2012), the values of absolute mean bias between foF2 derived by the proposed method and ionosonde observations are in the range of 0.2–0.5 MHz, while those during the period of low solar activity (2009–2010) are in the range of 0.05–0.15 MHz. Furthermore, the root-mean-square-error (RMSE) values during high and low solar activities are in the range of 0.8–0.9 MHz and of 0.6–0.7 MHz, respectively. We also noticed that the values of absolute mean bias and RMSE between foF2 derived by the proposed method and the IRI-2012 model are slightly larger than those between the proposed method and ionosonde observations. These results demonstrate that the proposed method can estimate foF2 with a comparable accuracy. Since the proposed method can estimate foF2 at every epoch of the observation, it therefore has promising applications for investigating various scales (from small to large) of foF2 irregularities. Numéro de notice : A2017-481 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1013-2 En ligne : https://doi.org/10.1007/s00190-017-1013-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86412
in Journal of geodesy > vol 91 n° 9 (September 2017) . - pp 1117 – 1133[article]