Détail de l'auteur
Auteur Mohamed Barakat A. Gibril |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images Type de document : Article/Communication Auteurs : Alireza Hamedianfar, Auteur ; Mohamed Barakat A. Gibril, Auteur ; Mohammadjavad Hosseinpoor, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 773 - 791 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte d'occupation du sol
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] itération
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'image
[Termes IGN] zone urbaineRésumé : (auteur) Geographic object-based image analysis (GEOBIA) has emerged as an effective and evolving paradigm for analyzing very high resolution (VHR) images as it demonstrates preeminence over the traditional pixel-wise methods and enables the utilization of diverse spectral, geometrical, and textural information to for image classification. Among feature selection (FS) methods, metaheuristic FS techniques have recently demonstrated effective performance in the dimensionality reduction of GEOBIA features. In this study, an artificial neural network (ANN) was integrated with particle swarm optimization (PSO) to enhance the learning process and more effectively determine the most significant features and their importance using WorldView-3 (WV-3) satellite data. First, multi-resolution image segmentation parameters were tuned using Taguchi optimization technique and unsupervised segmentation quality measure. Second, the proposed ANN–PSO was compared with PSO under 100 iterations. The ANN–PSO integration achieved lower root mean square error (RMSE) in all the iterations. Third, state-of-the-art extreme gradient boosting (Xgboost) image classifier was used to derive the land use/land cover (LULC) map of the first study area and assess the transferability of the selected features on the second and third regions. The Xgboost classifier obtained 91.68%, 89.54%, and 89.33% overall accuracies for the first, second, and third sites, respectively. ANN contributed to an intelligent approach for identifying which features are more likely to be relevant and discriminate the land cover types. The proposed integrated FS is a promising approach and an efficient tool for determining significant features and enhancing the detection of urban LULC classes from WV-3 data. Numéro de notice : A2022-344 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1737974 Date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1737974 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100525
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 773 - 791[article]Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)
[article]
Titre : Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area Type de document : Article/Communication Auteurs : Mohamed Barakat A. Gibril, Auteur ; Suzana Bakar, Auteur ; Kouame Yao, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 735 - 748 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] image Radarsat
[Termes IGN] Malaisie
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] surface cultivée
[Termes IGN] utilisation du sol
[Termes IGN] zone intertropicaleRésumé : (Auteur) In this study, we investigated the performance of different fusion and classification techniques for land cover mapping in Hilir Perak, Peninsula Malaysia using RADAR and Landsat-8 images in a predominantly agricultural area. The fusion methods used are Brovey Transform, Wavelet Transform, Ehlers and Layer Stacking and their results classified into seven different land cover classes which include (1) pixel-based classifiers (spectral angle mapper (SAM), maximum likelihood (ML), support vector machine (SVM)) and (2) Object-based (rule-based and standard nearest neighbour (NN)) classifiers. The result shows that pixel-based classification achieved maximum accuracy of the optical data classification using SVM in Landsat-8 with 74.96% accuracy compared to SAM and ML. For multisource data classification, the highest overall accuracy recorded for layer stacking (SVM) was 79.78%, Ehlers fusion (SVM) with 45.57%, Brovey fusion (SVM) with 63.70% and Wavelet fusion (SVM) 61.16%. And for object-based classifiers, the overall classification accuracy is 95.35% for rule-based and 76.33% for NN classifier, respectively. Based on the analysis of their performances, object-based and the rule-based classifiers produced the best classification accuracy from the fused images. Numéro de notice : A2017-453 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1170893 Date de publication en ligne : 15/04/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1170893 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86373
in Geocarto international > vol 32 n° 7 (July 2017) . - pp 735 - 748[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017071 RAB Revue Centre de documentation En réserve L003 Disponible