Détail de l'auteur
Auteur Kouame Yao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)
[article]
Titre : Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area Type de document : Article/Communication Auteurs : Mohamed Barakat A. Gibril, Auteur ; Suzana Bakar, Auteur ; Kouame Yao, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 735 - 748 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] image Radarsat
[Termes IGN] Malaisie
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] surface cultivée
[Termes IGN] utilisation du sol
[Termes IGN] zone intertropicaleRésumé : (Auteur) In this study, we investigated the performance of different fusion and classification techniques for land cover mapping in Hilir Perak, Peninsula Malaysia using RADAR and Landsat-8 images in a predominantly agricultural area. The fusion methods used are Brovey Transform, Wavelet Transform, Ehlers and Layer Stacking and their results classified into seven different land cover classes which include (1) pixel-based classifiers (spectral angle mapper (SAM), maximum likelihood (ML), support vector machine (SVM)) and (2) Object-based (rule-based and standard nearest neighbour (NN)) classifiers. The result shows that pixel-based classification achieved maximum accuracy of the optical data classification using SVM in Landsat-8 with 74.96% accuracy compared to SAM and ML. For multisource data classification, the highest overall accuracy recorded for layer stacking (SVM) was 79.78%, Ehlers fusion (SVM) with 45.57%, Brovey fusion (SVM) with 63.70% and Wavelet fusion (SVM) 61.16%. And for object-based classifiers, the overall classification accuracy is 95.35% for rule-based and 76.33% for NN classifier, respectively. Based on the analysis of their performances, object-based and the rule-based classifiers produced the best classification accuracy from the fused images. Numéro de notice : A2017-453 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1170893 Date de publication en ligne : 15/04/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1170893 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86373
in Geocarto international > vol 32 n° 7 (July 2017) . - pp 735 - 748[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017071 RAB Revue Centre de documentation En réserve L003 Disponible