Détail de l'auteur
Auteur Emrehan Kutlug Sahin |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping / Emrehan Kutlug Sahin in Geocarto international, vol 37 n° 9 ([15/05/2022])
[article]
Titre : Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Emrehan Kutlug Sahin, Auteur Année de publication : 2022 Article en page(s) : pp 2441 - 2465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] cartographie thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] effondrement de terrain
[Termes IGN] Extreme Gradient Machine
[Termes IGN] khi carré
[Termes IGN] TurquieRésumé : (auteur) The aim of the study is to compare four recent gradient boosting algorithms named as Gradient Boosting Machine (GBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM) for modelling landslide susceptibility (LS). In the first step of the study, the geodatabase including landslide inventory map and landslide conditioning factors was constructed. In the second step, chi-square (CHI) statistic-based feature selection (FS) technique was utilized to compute the importance of the landslide causative factors. In the third step, tree-based ensemble learning algorithms were applied to predict the potential distribution of landslide susceptibility. Also, the prediction performance of ensemble methods was compared to that of Random Forest (RF) ensemble method. Finally, the prediction capabilities of the methods were assessed using overall accuracy (Acc), area under the receiver operating characteristic curve (AUC), kappa index, root mean square error (RMSE), and F score measures. In order to further evaluation, the McNemar's test was utilized to assess statistical significance in the differences between the four gradient boosting models. The accuracy results indicated that the CatBoost model had the highest prediction capability (Acc= 0.8503 and AUC= 0.8975), followed by the XGBoost (Acc= 0.8336 and AUC= 0.8860), the LightGBM (Acc= 0.8244 and AUC= 0.8796) and the GBM (Acc= 0.8080 and AUC= 0.8685). On the other hand, the estimated accuracy measures considered in this study showed that the RF method had the lowest prediction capability of compared the others. Although the individual performances of the methods were found to be acceptable level, the CatBoost method showed the superior performance compared to others with respect to the AUC and Acc values estimated in this study. The results of the study confirmed that the relatively new ensemble learning techniques were efficient and robust for producing LS maps and furthermore, it is probably that these algorithms will be preferred more often in the future studies due to their robustness. Numéro de notice : A2022-564 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1831623 Date de publication en ligne : 16/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1831623 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101244
in Geocarto international > vol 37 n° 9 [15/05/2022] . - pp 2441 - 2465[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022091 RAB Revue Centre de documentation En réserve L003 Disponible Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping / Emrehan Kutlug Sahin in Geocarto international, vol 32 n° 9 (September 2017)
[article]
Titre : Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Emrehan Kutlug Sahin, Auteur ; Cengizhan Ipbuker, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2017 Article en page(s) : pp 956 - 977 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse comparative
[Termes IGN] cartographie des risques
[Termes IGN] distribution de Fisher
[Termes IGN] effondrement de terrain
[Termes IGN] khi carré
[Termes IGN] pondération
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] risque naturel
[Termes IGN] surveillance géologique
[Termes IGN] test de performance
[Termes IGN] vulnérabilitéRésumé : (Auteur) In landslide susceptibility mapping, factor weights have been usually determined by expert judgements. A novel methodology for weighting landslide causative factors by integrating statistical feature weighting algorithms was proposed. The primary focus of this study is to investigate the effectiveness of automatic feature weighting algorithms, namely Fisher, Chi-square and Relief-F algorithms. Analytic hierarchy process (AHP) method was used as a benchmark method to compare the performances of the weighting algorithms. All weighted factors were tested using factor-weighted overlay method, and quality of these maps was assessed using overall accuracy, area under the ROC curve (AUC) and success rate curve. In addition, Wilcoxon’s signed-rank test was applied to evaluate statistical differences between both estimated overall accuracies and AUCs, respectively. Results showed that the weights determined by feature weighting methods outperformed the conventional AHP method by about 6% and this level of differences was found to be statistically significant. Numéro de notice : A2017-458 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1170892 Date de publication en ligne : 11/04/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1170892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86383
in Geocarto international > vol 32 n° 9 (September 2017) . - pp 956 - 977[article]