Détail de l'auteur
Auteur Yanni Dong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning / Yanni Dong in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning Type de document : Article/Communication Auteurs : Yanni Dong, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur ; Lefei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 2509 - 2524 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] réductionRésumé : (Auteur) The high-dimensional data space of hyperspectral images (HSIs) often result in ill-conditioned formulations, which finally leads to many of the high-dimensional feature spaces being empty and the useful data existing primarily in a subspace. To avoid these problems, we use distance metric learning for dimensionality reduction. The goal of distance metric learning is to incorporate abundant discriminative information by reducing the dimensionality of the data. Considering that global metric learning is not appropriate for all training samples, this paper proposes an ensemble discriminative local metric learning (EDLML) algorithm for HSI analysis. The EDLML algorithm learns robust local metrics from both the training samples and the relative neighborhood of them and considers the different local discriminative distance metrics by dealing with the data region by region. It aims to learn a subspace to keep all the samples in the same class are as near as possible, while those from different classes are separated. The learned local metrics are then used to build an ensemble metric. Experiments on a number of different hyperspectral data sets confirm the effectiveness of the proposed EDLML algorithm compared with that of the other dimension reduction methods. Numéro de notice : A2017-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2645703 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2645703 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86388
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2509 - 2524[article]