Détail de l'auteur
Auteur John Armston |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles / Nico Lang in Remote sensing of environment, vol 268 (January 2022)
[article]
Titre : Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles Type de document : Article/Communication Auteurs : Nico Lang, Auteur ; Nicolai Kalischek, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n* 112760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation bayesienne
[Termes IGN] forme d'onde
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle. While GEDI is the first space-based LIDAR explicitly optimized to measure vertical forest structure predictive of aboveground biomass, the accurate interpretation of this vast amount of waveform data across the broad range of observational and environmental conditions is challenging. Here, we present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally. We propose a probabilistic deep learning approach based on an ensemble of deep convolutional neural networks (CNN) to avoid the explicit modelling of unknown effects, such as atmospheric noise. The model learns to extract robust features that generalize to unseen geographical regions and, in addition, yields reliable estimates of predictive uncertainty. Ultimately, the global canopy top height estimates produced by our model have an expected RMSE of 2.7 m with low bias. Numéro de notice : A2022-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112760 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112760 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99495
in Remote sensing of environment > vol 268 (January 2022) . - n* 112760[article]Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning / Mathieu Decuyper in Forest ecology and management, vol 429 (1 December 2018)
[article]
Titre : Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning Type de document : Article/Communication Auteurs : Mathieu Decuyper, Auteur ; Kalkidan Ayele Mulatu, Auteur ; Benjamin Brede, Auteur ; Kim Calders, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 327 - 335 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] Coffea (genre)
[Termes IGN] Coffea arabica
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Ethiopie
[Termes IGN] forêt tropicale
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] sylvopastoralismeRésumé : (Auteur) Increasing anthropogenic pressure leads to loss of habitat through deforestation and degradation in tropical forests. While deforestation can be monitored relatively easily, forest management practices are often subtle processes, that are difficult to capture with for example satellite monitoring. Conventional measurements are well established and can be useful for management decisions, but it is believed that Terrestrial Laser Scanning (TLS) has a role in quantitative monitoring and continuous improvement of methods. In this study we used a combination of TLS and conventional forest inventory measures to estimate forest structural parameters in four different forest types in a tropical montane cloud forest in Kafa, Ethiopia. Here, the four forest types (intact forest, coffee forest, silvopasture, and plantations) are a result of specific management practices (e.g. clearance of understory in coffee forest), and not different forest communities or tree types. Both conventional and TLS derived parameters confirmed our assumptions that intact forest had the highest biomass, silvopasture had the largest canopy gaps, and plantations had the lowest canopy openness. Contrary to our expectations, coffee forest had higher canopy openness and similar biomass as silvopasture, indicating a significant loss of forest structure. The 3D vegetation structure (PAVD – Plant area vegetation density) was different between the forest types with the highest PAVD in intact forest and plantation canopy. Silvopasture was characterised by a low canopy but high understorey PAVD, indicating regeneration of the vegetation and infrequent fuelwood collection and/or non-intensive grazing. Coffee forest canopy had low PAVD, indicating that many trees had been removed, despite coffee needing canopy shade. These findings may advocate for more tangible criteria such as canopy openness thresholds in sustainable coffee certification schemes. TLS as tool for monitoring forest structure in plots with different forest types shows potential as it can capture the 3D position of the vegetation volume and open spaces at all heights in the forest. To quantify changes in different forest types, consistent monitoring of 3D structure is needed and here TLS is an add-on or an alternative to conventional forest structure monitoring. However, for the tropics, TLS-based automated segmentation of trees to derive DBH and biomass is not widely operational yet, nor is species richness determination in forest monitoring. Integration of data sources is needed to fully understand forest structural diversity and implications of forest management practices on different forest types. Numéro de notice : A2018-467 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2018.07.032 Date de publication en ligne : 23/07/2018 En ligne : https://doi.org/10.1016/j.foreco.2018.07.032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91146
in Forest ecology and management > vol 429 (1 December 2018) . - pp 327 - 335[article]Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability / Kim Calders in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability Type de document : Article/Communication Auteurs : Kim Calders, Auteur ; Mathias I. Disney, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 2716 - 2724 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] acquisition de données
[Termes IGN] analyse comparative
[Termes IGN] étalonnage radiométrique
[Termes IGN] évaluation des données
[Termes IGN] interopérabilité sémantique
[Termes IGN] précision métrique
[Termes IGN] réflectance
[Termes IGN] télémètre laser terrestreRésumé : (Auteur) Terrestrial laser scanning (TLS) data provide 3-D measurements of vegetation structure and have the potential to support the calibration and validation of satellite and airborne sensors. The increasing range of different commercial and scientific TLS instruments holds challenges for data and instrument interoperability. Using data from various TLS sources will be critical to upscale study areas or compare data. In this paper, we provide a general framework to compare the interoperability of TLS instruments. We compare three TLS instruments that are the same make and model, the RIEGL VZ-400. We compare the range accuracy and evaluate the manufacturer's radiometric calibration for the uncalibrated return intensities. Our results show that the range accuracy between instruments is comparable and within the manufacturer's specifications. This means that the spatial XYZ data of different instruments can be combined into a single data set. Our findings demonstrate that radiometric calibration is instrument specific and needs to be carried out for each instrument individually before including reflectance information in TLS analysis. We show that the residuals between the calibrated reflectance panels and the apparent reflectance measured by the instrument are greatest for highest reflectance panels (residuals ranging from 0.058 to 0.312). Numéro de notice : A2017-468 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2652721 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2652721 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86391
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2716 - 2724[article]