Détail de l'auteur
Auteur Aravind Harikumar |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
[article]
Titre : A local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data Type de document : Article/Communication Auteurs : Aravind Harikumar, Auteur ; Francesca Bovolo, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 1168 - 1182 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre dominant
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] Pinophyta
[Termes IGN] projection
[Termes IGN] segmentation
[Termes IGN] TrenteRésumé : (Auteur) Accurate crown detection and delineation of dominant and subdominant trees are crucial for accurate inventorying of forests at the individual tree level. The state-of-the-art tree detection and crown delineation methods have good performance mostly with dominant trees, whereas exhibits a reduced accuracy when dealing with subdominant trees. In this paper, we propose a novel approach to accurately detect and delineate both the dominant and subdominant tree crowns in conifer-dominated multistoried forests using small footprint high-density airborne Light Detection and Ranging data. Here, 3-D candidate cloud segments delineated using a canopy height model segmentation technique are projected onto a novel 3-D space where both the dominant and subdominant tree crowns can be accurately detected and delineated. Tree crowns are detected using 2-D features derived from the projected data. The delineation of the crown is performed at the voxel level with the help of both the 2-D features and 3-D texture information derived from the cloud segment. The texture information is modeled by using 3-D Gray Level Co-occurrence Matrix. The performance evaluation was done on a set of six circular plots for which reference data are available. The high detection and delineation accuracies obtained over the state of the art prove the performance of the proposed method. Numéro de notice : A2019-112 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2865014 Date de publication en ligne : 10/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2865014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92452
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 1168 - 1182[article]An internal crown geometric model for conifer species classification with high-density LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : An internal crown geometric model for conifer species classification with high-density LiDAR data Type de document : Article/Communication Auteurs : Aravind Harikumar, Auteur ; Francesca Bovolo, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2017 Article en page(s) : pp 2924 - 2940 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse en composantes principales
[Termes IGN] classification dirigée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] houppier
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle géométrique
[Termes IGN] Pinophyta
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] TrenteRésumé : (Auteur) The knowledge of the tree species is a crucial information that governs the success of precision forest management practice. High-density small footprint multireturn airborne light detection and ranging (LiDAR) scanning can collect a huge amount of point samples containing structural details of the forest vertical profile, which can reveal important structural information of the forest components. LiDAR data have been successfully used to distinguish between coniferous and deciduous/broadleaved tree species. However, species classification within a class (e.g., the conifer class) using LiDAR data is a challenging problem when considering the tree external crown characteristics only. This paper presents a novel method for conifer species classification based on the use of geometric features describing both the internal and external structures of the crown. The internal crown geometric features (IGFs) are defined based on a novel internal branch structure model, which uses 3-D region growing and principal component analysis to delineate the branch structure of a conifer tree accurately. IGFs are used together with external crown geometric features to perform conifer species classification. Three different support vector machines have been considered for classification performance evaluation. The experimental analysis conducted on high-density LiDAR data acquired over a portion of the Trentino region in Italy proves the effectiveness of the proposed method. Numéro de notice : A2017-471 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2656152 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2656152 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86394
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2924 - 2940[article]