Détail de l'auteur
Auteur Jeffrey D. Ouellette |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A time-series approach to estimating soil moisture from vegetated surfaces using L-band radar backscatter / Jeffrey D. Ouellette in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : A time-series approach to estimating soil moisture from vegetated surfaces using L-band radar backscatter Type de document : Article/Communication Auteurs : Jeffrey D. Ouellette, Auteur ; Joel T. Johnson, Auteur ; Anna Balenzano, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 3186 - 3193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] couvert végétal
[Termes IGN] détection de changement
[Termes IGN] humidité du sol
[Termes IGN] image radar
[Termes IGN] radiométrie
[Termes IGN] rétrodiffusion
[Termes IGN] série temporelle
[Termes IGN] traitement d'image radarRésumé : (Auteur) Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m3/m3 over a variety land cover types. Numéro de notice : A2017-475 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2663768 En ligne : https://doi.org/10.1109/TGRS.2017.2663768 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86400
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3186 - 3193[article]