Détail de l'auteur
Auteur Michael Kwok-Po Ng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data / Michael Kwok-Po Ng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data Type de document : Article/Communication Auteurs : Michael Kwok-Po Ng, Auteur ; Qiangqiang Yuan, Auteur ; Li Yan, Auteur ; Jing Sun, Auteur Année de publication : 2017 Article en page(s) : pp 3367 - 3381 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] détection de partie cachée
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] spectroradiométrie
[Termes IGN] tenseurRésumé : (Auteur) Missing information, such as dead pixel values and cloud effects, is very common image quality degradation problems in remote sensing. Missing information can reduce the accuracy of the subsequent image processing, in applications such as classification, unmixing, and target detection, and even the quantitative retrieval process. The main aim of this paper is to study an adaptive weighted tensor completion (AWTC) method for the recovery of remote sensing images with missing data. Our idea is to collectively make use of the spatial, spectral, and temporal information to build a new weighted tensor low-rank regularization model for recovering the missing data. In the model, the weights are determined adaptively by considering the contribution of the spatial, spectral, and temporal information in each dimension. Experimental results based on both simulated and real data sets are presented to verify that the proposed method can recover missing data, and its performance is found to be better than the other tested methods. In the simulated experiments, the peak signal-to-noise ratio is improved by more than 3 dB, compared with the original tensor completion model. In the real data experiments, the proposed AWTC model can better recover the dead line problem in Aqua Moderate Resolution Imaging Spectroradiometer band 6 and the scan-line corrector-off problem in enhanced thematic mapper plus images, with the smallest spectral distortion. Numéro de notice : A2017-476 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2670021 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2670021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86401
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3367 - 3381[article]