Détail de l'auteur
Auteur Zhengxia Zou |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] altitude
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection des nuages
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image Gaofen
[Termes IGN] information géographique
[Termes IGN] latitude
[Termes IGN] longitude
[Termes IGN] modèle statistique
[Termes IGN] neige
[Termes IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 Date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 87 - 104[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Can a machine generate humanlike language descriptions for a remote sensing image? / Zhenwei Shi in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : Can a machine generate humanlike language descriptions for a remote sensing image? Type de document : Article/Communication Auteurs : Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2017 Article en page(s) : pp 3623 - 3634 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] descripteur
[Termes IGN] image à haute résolution
[Termes IGN] intelligence artificielle
[Termes IGN] interface en langage naturelRésumé : (Auteur) This paper investigates an intriguing question in the remote sensing field: “can a machine generate humanlike language descriptions for a remote sensing image?” The automatic description of a remote sensing image (namely, remote sensing image captioning) is an important but rarely studied task for artificial intelligence. It is more challenging as the description must not only capture the ground elements of different scales, but also express their attributes as well as how these elements interact with each other. Despite the difficulties, we have proposed a remote sensing image captioning framework by leveraging the techniques of the recent fast development of deep learning and fully convolutional networks. The experimental results on a set of high-resolution optical images including Google Earth images and GaoFen-2 satellite images demonstrate that the proposed method is able to generate robust and comprehensive sentence description with desirable speed performance. Numéro de notice : A2017-479 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2677464 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2677464 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86406
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3623 - 3634[article]