Détail de l'auteur
Auteur Sajad Tabibi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval / Sajad Tabibi in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
[article]
Titre : Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval Type de document : Article/Communication Auteurs : Sajad Tabibi, Auteur ; Felipe Geremia-Nievinski, Auteur ; Tonie M. van Dam, Auteur Année de publication : 2017 Article en page(s) : pp 3773 - 3785 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] épaisseur
[Termes IGN] neige
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement par GPS
[Termes IGN] réflectométrie par GNSS
[Termes IGN] série temporelleRésumé : (Auteur) Global navigation satellite system (GNSS) multipath reflectometry (MR) has emerged as a new technique that uses signals of opportunity broadcast by GNSS satellites and tracked by ground-based receivers to retrieve environmental variables such as snow depth. The technique is based on the simultaneous reception of direct or line-of-sight (LOS) transmissions and corresponding coherent surface reflections (non-LOS). Until recently, snow depth retrieval algorithms only used legacy and modernized GPS signals. Using multiple GNSS constellations for reflectometry would improve GNSS-MR applications by providing more observations from more satellites and independent signals (carrier frequencies and code modulations). We assess GPS and GLONASS for combined multi-GNSS-MR using simulations as well as field measurements. Synthetic observations for different signals indicated a lack of detectable interfrequency and intercode biases in GNSS-MR snow depth retrievals. Received signals from a GNSS station continuously operating in France for a two-winter period are used for experimental snow depth retrieval. We perform an internal validation of various GNSS signals against the proven GPS-L2-C signal, which was validated externally against in situ snow depth in previous studies. GLONASS observations required a more complex handling to account for topography because of its particular ground track repeatability. Signal intercomparison show an average correlation of 0.922 between different GPS snow depths and GPS-L2-CL, while GLONASS snow depth retrievals have an average correlation that exceeds 0.981. In terms of precision and accuracy, legacy GPS signals are worse, while GLONASS signals and modernized GPS signals are of comparable quality. Finally, we show how an optimal multi-GNSS combined daily snow depth time series can be formed employing variance factors with a ~59%-90% precision improvement compared to individual signal snow depth retrievals, resulting in snow depth retrieval with uncertainty of 1.3 cm. The developed combination strategy can also be applied for the European Galileo and the Chines BeiDou navigation systems. Numéro de notice : A2017-487 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2679899 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2679899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86414
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 7 (July 2017) . - pp 3773 - 3785[article]