Détail de l'auteur
Auteur Jian Kang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Robust object-based multipass InSAR deformation reconstruction / Jian Kang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Robust object-based multipass InSAR deformation reconstruction Type de document : Article/Communication Auteurs : Jian Kang, Auteur ; Yuanyuan Wang, Auteur ; Marco Körner, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 4239 - 4251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification orientée objet
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] inversion
[Termes IGN] pont
[Termes IGN] surveillance géologique
[Termes IGN] tenseurRésumé : (Auteur) Deformation monitoring by multipass synthetic aperture radar (SAR) interferometry (InSAR) is, so far, the only imaging-based method to assess millimeter-level deformation over large areas from space. Past research mostly focused on the optimal retrieval of deformation parameters on the basis of a single pixel or a pixel cluster. Only until recently, the first demonstration of object-based urban infrastructure monitoring by fusing InSAR and the semantic classification labels derived from optical images was presented by Wang et al. Given such classification labels in the SAR image, we propose a general framework for object-based InSAR parameter retrieval, where the parameters of the whole object are jointly estimated by the inversion of a regularized tensor model instead of pixelwise. Our approach does not assume the stationarity of each sample in the object, which is usually assumed in other pixel cluster-based methods, such as SqueeSAR. In addition, to handle outliers in real data, a robust phase recovery step prior to parameter retrieval is also introduced. In typical settings, the proposed method outperforms the current pixelwise estimators, e.g., periodogram, by a factor of several tens in the accuracy of the linear deformation estimates. Last but not least, for a practical demonstration on bridge monitoring, we present a full workflow of long-term bridge monitoring using the proposed approach. Numéro de notice : A2017-492 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2684424 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2684424 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86422
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4239 - 4251[article]