Détail de l'auteur
Auteur Yuebin Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Xiaohua Tong, Auteur ; Feiping Nie, Auteur ; Haiyang Huang, Auteur ; Jie Mei, Auteur Année de publication : 2018 Article en page(s) : pp 621 - 634 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification semi-dirigée
[Termes IGN] graphe
[Termes IGN] image aérienne
[Termes IGN] programmation par contraintes
[Termes IGN] régression linéaire
[Termes IGN] scèneRésumé : (Auteur) The performance of scene classification relies heavily on the spatial and structural features that are extracted from high spatial resolution remote-sensing images. Existing approaches, however, are limited in adequately exploiting latent relationships between scene images. Aiming to decrease the distances between intraclass images and increase the distances between interclass images, we propose a latent relationship learning framework that integrates an adaptive graph with the constraints of the feature space and label propagation for high-resolution aerial image classification. To describe the latent relationships among scene images in the framework, we construct an adaptive graph that is embedded into the constrained joint space for features and labels. To remove redundant information and improve the computational efficiency, subspace learning is introduced to assist in the latent relationship learning. To address out-of-sample data, linear regression is adopted to project the semisupervised classification results onto a linear classifier. Learning efficiency is improved by minimizing the objective function via the linearized alternating direction method with an adaptive penalty. We test our method on three widely used aerial scene image data sets. The experimental results demonstrate the superior performance of our method over the state-of-the-art algorithms in aerial scene image classification. Numéro de notice : A2018-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2752217 Date de publication en ligne : 24/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2752217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89854
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 621 - 634[article]Learning a discriminative distance metric with label consistency for scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Learning a discriminative distance metric with label consistency for scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Hao Deng, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4427 - 4440 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] apprentissage dirigé
[Termes IGN] image hyperspectrale
[Termes IGN] métrique
[Termes IGN] précision de la classificationRésumé : (Auteur) To achieve high scene classification performance of high spatial resolution remote sensing images (HSR-RSIs), it is important to learn a discriminative space in which the distance metric can precisely measure both similarity and dissimilarity of features and labels between images. While the traditional metric learning methods focus on preserving interclass separability, label consistency (LC) is less involved, and this might degrade scene images classification accuracy. Aiming at considering intraclass compactness in HSR-RSIs, we propose a discriminative distance metric learning method with LC (DDML-LC). The DDML-LC starts from the dense scale invariant feature transformation features extracted from HSR-RSIs, and then uses spatial pyramid maximum pooling with sparse coding to encode the features. In the learning process, the intraclass compactness and interclass separability are enforced while the global and local LC after the feature transformation is constrained, leading to a joint optimization of feature manifold, distance metric, and label distribution. The learned metric space can scale to discriminate out-of-sample HSR-RSIs that do not appear in the metric learning process. Experimental results on three data sets demonstrate the superior performance of the DDML-LC over state-of-the-art techniques in HSR-RSI classification. Numéro de notice : A2017-498 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2692280 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2692280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86440
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4427 - 4440[article]