Détail de l'auteur
Auteur Lena Albert |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : A higher order conditional random field model for simultaneous classification of land cover and land use Type de document : Article/Communication Auteurs : Lena Albert, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2017 Article en page(s) : pp 63 - 80 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] classification pixellaire
[Termes IGN] image aérienne
[Termes IGN] inférence
[Termes IGN] occupation du sol
[Termes IGN] prise en compte du contexte
[Termes IGN] relation sémantique
[Termes IGN] utilisation du solRésumé : (Auteur) We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent superpixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intralayer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by interlayer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the superpixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas. Numéro de notice : A2017-510 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.04.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86456
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 63 - 80[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt