Détail de l'auteur
Auteur Timo Hackel |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Large-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net / Timo Hackel in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 5 (mai 2018)
[article]
Titre : Large-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net Type de document : Article/Communication Auteurs : Timo Hackel, Auteur ; Jan Dirk Wegner, Auteur ; Nikolay Savinov, Auteur ; Lubor Ladicky, Auteur ; Konrad Schindler, Auteur ; Marc Pollefeys, Auteur Année de publication : 2018 Article en page(s) : pp 297 - 308 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, we review current state-of-the-art in 3D point cloud classification, present a new 3D point cloud classification benchmark data set of single scans with over four billion manually labeled points, and discuss first available results on the benchmark. Much of the stunning recent progress in 2D image interpretation can be attributed to the availability of large amounts of training data, which have enabled the (supervised) learning of deep neural networks. With the data set presented in this paper, we aim to boost the performance of CNNs also for 3D point cloud labeling. Our hope is that this will lead to a breakthrough of deep learning also for 3D (geo-) data. The semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains eight semantic classes and covers a wide range of urban outdoor scenes, including churches, streets, railroad tracks, squares, villages, soccer fields, and castles. We describe our labeling interface and show that, compared to those already available to the research community, our data set provides denser and more complete point clouds, with a much higher overall number of labeled points. We further provide descriptions of baseline methods and of the first independent submissions, which are indeed based on CNNs, and already show remarkable improvements over prior art. We hope that semantic3D.net will pave the way for deep learning in 3D point cloud analysis, and for 3D representation learning in general. Numéro de notice : A2018-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.5.297 Date de publication en ligne : 01/05/2018 En ligne : https://doi.org/10.14358/PERS.84.5.297 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89795
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 5 (mai 2018) . - pp 297 - 308[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018051 RAB Revue Centre de documentation En réserve L003 Disponible Joint classification and contour extraction of large 3D point clouds / Timo Hackel in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Joint classification and contour extraction of large 3D point clouds Type de document : Article/Communication Auteurs : Timo Hackel, Auteur ; Jan Dirk Wegner, Auteur ; Konrad Schindler, Auteur Année de publication : 2017 Article en page(s) : pp 231 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut sémantique
[Termes IGN] classification dirigée
[Termes IGN] compréhension de l'image
[Termes IGN] densité des points
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours.
Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with
points.Numéro de notice : A2017-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86476
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 231 - 245[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt