Détail de l'auteur
Auteur Zhe Zhu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
[article]
Titre : A novel regression method for harmonic analysis of time series Type de document : Article/Communication Auteurs : Qiang Zhou, Auteur ; Zhe Zhu, Auteur ; George Xian, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 48 - 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] détection de changement
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-SWIR
[Termes IGN] modèle de régression
[Termes IGN] réflectance
[Termes IGN] régression harmonique
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Harmonic analysis of time series is an important technique to reveal seasonal land surface dynamics using remote sensing information. However, frequency selection in the harmonic analysis is often difficult because high-frequency components are useful for delineating seasonal dynamics but sensitive to noise and gaps in time series. On the other hand, it is challenging to obtain temporally continuous satellite data with high quality because of atmospheric contamination. We developed a novel regression method named Harmonic Adaptive Penalty Operator (HAPO) for harmonic analysis of unevenly distributed time series. We introduced a new penalty function to minimize unexpected fluctuations in the model, which can substantially reduce the overfitting issue of regression in time series with temporal gaps. Specifically, the new penalty function minimizes the length of the model curve and the value range difference between the model and time series observations. We compared HAPO with three widely used regression methods (OLS: Ordinary Least Squares; LASSO: Least Absolute Shrinkage and Selection Operator; and Ridge) with different scenarios using Landsat time series data across the United States. First, we evaluated methods using Landsat surface reflectance time series within a single year. HAPO showed small and consistent monthly Root Mean Square Deviation (RMSD) values, in which most of the time RMSD values of predicted reflectance were less than 0.04. More importantly, HAPO showed consistent and less bias given varying density and irregularity of time series. Second, we evaluated methods using multi-year time series and the result suggested that HAPO was a better predictor of relatively short time series (less than4 years) with steady small RMSD values. When a longer time series (≥4 years) was used, all four methods disclosed similar RMSD values, but HAPO outperformed other three methods when there were temporal gaps. Last, we preliminarily tested how regression methods affected change detection and classification accuracy. HAPO showed the highest change detection accuracy of all tests in terms of F1 score when using the change threshold of 0.9999. In classification, HAPO produced the highest accuracy for short time series segments (one- or two-year time series). In contrast, all methods reached similar accuracy for 5-year time series. These results suggest that for areas that have large seasonal observation gaps or for time series that have less than 4 years records, HAPO can provide more consistent and accurate analytical results than other regression methods for harmonic analysis of time series. Numéro de notice : A2022-133 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.006 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99729
in ISPRS Journal of photogrammetry and remote sensing > vol 185 (March 2022) . - pp 48 - 61[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022031 SL Revue Centre de documentation Revues en salle Disponible Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications / Zhe Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications Type de document : Article/Communication Auteurs : Zhe Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 370 - 384 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection de changement
[Termes IGN] détection de cible
[Termes IGN] fréquence
[Termes IGN] image Landsat
[Termes IGN] restauration d'image
[Termes IGN] série temporelleRésumé : (Auteur) The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection. Numéro de notice : A2017-518 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.06.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.06.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86480
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 370 - 384[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt