Détail de l'auteur
Auteur Lingfeng Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semantic labeling in very high resolution images via a self-cascaded convolutional neural network / Yoncheng Liu in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : Semantic labeling in very high resolution images via a self-cascaded convolutional neural network Type de document : Article/Communication Auteurs : Yoncheng Liu, Auteur ; Bin Fan, Auteur ; Lingfeng Wang, Auteur ; Jun Bai, Auteur ; Shiming Xiang, Auteur ; Chunhong Pan, Auteur Année de publication : 2018 Article en page(s) : pp 78 - 95 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] image à très haute résolution
[Termes IGN] réseau neuronal convolutif
[Termes IGN] zone urbaineRésumé : (Auteur) Semantic labeling for very high resolution (VHR) images in urban areas, is of significant importance in a wide range of remote sensing applications. However, many confusing manmade objects and intricate fine-structured objects make it very difficult to obtain both coherent and accurate labeling results. For this challenging task, we propose a novel deep model with convolutional neural networks (CNNs), i.e., an end-to-end self-cascaded network (ScasNet). Specifically, for confusing manmade objects, ScasNet improves the labeling coherence with sequential global-to-local contexts aggregation. Technically, multi-scale contexts are captured on the output of a CNN encoder, and then they are successively aggregated in a self-cascaded manner. Meanwhile, for fine-structured objects, ScasNet boosts the labeling accuracy with a coarse-to-fine refinement strategy. It progressively refines the target objects using the low-level features learned by CNN’s shallow layers. In addition, to correct the latent fitting residual caused by multi-feature fusion inside ScasNet, a dedicated residual correction scheme is proposed. It greatly improves the effectiveness of ScasNet. Extensive experimental results on three public datasets, including two challenging benchmarks, show that ScasNet achieves the state-of-the-art performance. Numéro de notice : A2018-490 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.12.007 Date de publication en ligne : 21/12/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.12.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91226
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 78 - 95[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Facade repetition detection in a fronto-parallel view with fiducial lines extraction / Hongfei Xiao in Neurocomputing, vol 273 (January 2018)
[article]
Titre : Facade repetition detection in a fronto-parallel view with fiducial lines extraction Type de document : Article/Communication Auteurs : Hongfei Xiao, Auteur ; Gaofeng Meng, Auteur ; Lingfeng Wang, Auteur ; Chunhong Pan, Auteur Année de publication : 2018 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] programmation dynamiqueRésumé : (auteur) Detecting repetitive structures on building facades plays an important role in facade image analysis. Observing that repetitions are usually horizontally and vertically aligned, and thereby can be localized by the horizontal and vertical lines passing along the repetition boundaries, we propose to detect repetitions by extracting these fiducial lines. Firstly, candidate lines are detected, containing both the fiducial lines and some mistaken lines passing across facade wall or repetitive structures. Secondly, to pick out the fiducial lines, we formulate a maximum a posterior problem to measure the probabilities that the lines can localize the repetitions. Finally, a dynamic programming based algorithm is developed to solve the problem efficiently. To evaluate the proposed approach, we implement a series of experiments on a dataset containing 60 facade images as well as the public Ecole Central Paris facade dataset. Both qualitative and quantitative results demonstrate the effectiveness of our approach. Numéro de notice : A2017-559 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.neucom.2017.07.040 En ligne : https://doi.org/10.1016/j.neucom.2017.07.040 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86636
in Neurocomputing > vol 273 (January 2018)[article]