Détail de l'auteur
Auteur Sarang Joshi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
On the visibility locations for continuous curves / Sarang Joshi in Computers and graphics, vol 66 (August 2017)
[article]
Titre : On the visibility locations for continuous curves Type de document : Article/Communication Auteurs : Sarang Joshi, Auteur ; Yoshida Rao, Auteur ; Bharath Ram Sundar, Auteur Année de publication : 2017 Article en page(s) : pp 34 - 44 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] courbe
[Termes IGN] traitement de données localisées
[Termes IGN] visibilitéRésumé : (auteur) The problem of determining visibility locations (VLs) on/inside a domain bounded by a planar C1-continuous curve (without vertices), such that entire domain is covered, is discussed in this paper. The curved boundary has been used without being approximated into lines or polygons. Initially, a few observations regarding the VLs for a curved boundary have been made. It is proposed that the set of VLs required to cover the domain be placed in a manner that the VLs and the lines connecting them form a spanning tree. Along with other observations, an algorithm has been provided which gives a near optimal number of VLs. The obtained number of VLs is then compared with a visibility disjoint set, called as witness points, to obtain a measure of the ‘nearness’ of the number of VLs to the optimum. The experiments on different curved shapes illustrate that the algorithm captures the optimal solution for many shapes and near-optimal for most others. Numéro de notice : A2017-563 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cag.2017.05.023 En ligne : https://doi.org/10.1016/j.cag.2017.05.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86645
in Computers and graphics > vol 66 (August 2017) . - pp 34 - 44[article]