Détail de l'auteur
Auteur Shuyao Qi |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Configurable 3D scene synthesis and 2D image rendering with per-pixel ground truth using stochastic grammars / Chenfanfu Jiang in International journal of computer vision, vol 126 n° 9 (September 2018)
[article]
Titre : Configurable 3D scene synthesis and 2D image rendering with per-pixel ground truth using stochastic grammars Type de document : Article/Communication Auteurs : Chenfanfu Jiang, Auteur ; Shuyao Qi, Auteur ; Yixin Zhu, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 920 - 941 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] architecture pipeline (processeur)
[Termes IGN] compréhension de l'image
[Termes IGN] image RVB
[Termes IGN] rendu réaliste
[Termes IGN] scène intérieure
[Termes IGN] segmentation sémantique
[Termes IGN] synthèse d'imageRésumé : (Auteur) We propose a systematic learning-based approach to the generation of massive quantities of synthetic 3D scenes and arbitrary numbers of photorealistic 2D images thereof, with associated ground truth information, for the purposes of training, benchmarking, and diagnosing learning-based computer vision and robotics algorithms. In particular, we devise a learning-based pipeline of algorithms capable of automatically generating and rendering a potentially infinite variety of indoor scenes by using a stochastic grammar, represented as an attributed Spatial And-Or Graph, in conjunction with state-of-the-art physics-based rendering. Our pipeline is capable of synthesizing scene layouts with high diversity, and it is configurable inasmuch as it enables the precise customization and control of important attributes of the generated scenes. It renders photorealistic RGB images of the generated scenes while automatically synthesizing detailed, per-pixel ground truth data, including visible surface depth and normal, object identity, and material information (detailed to object parts), as well as environments (e.g., illuminations and camera viewpoints). We demonstrate the value of our synthesized dataset, by improving performance in certain machine-learning-based scene understanding tasks—depth and surface normal prediction, semantic segmentation, reconstruction, etc.—and by providing benchmarks for and diagnostics of trained models by modifying object attributes and scene properties in a controllable manner. Numéro de notice : A2018-416 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-018-1103-5 Date de publication en ligne : 30/06/2018 En ligne : https://doi.org/10.1007/s11263-018-1103-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90899
in International journal of computer vision > vol 126 n° 9 (September 2018) . - pp 920 - 941[article]Snapshot and continuous points-based trajectory search / Shuyao Qi in Geoinformatica, vol 21 n° 4 (October - December 2017)
[article]
Titre : Snapshot and continuous points-based trajectory search Type de document : Article/Communication Auteurs : Shuyao Qi, Auteur ; Dimitri Sacharidis, Auteur ; Panagiotis Bouros, Auteur ; Nikos Mamoulis, Auteur Année de publication : 2017 Article en page(s) : pp 669 - 701 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] calcul d'itinéraire
[Termes IGN] distance
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] temps
[Termes IGN] temps instantané
[Termes IGN] théorie des possibilitésRésumé : (Auteur) Trajectory data capture the traveling history of moving objects such as people or vehicles. With the proliferation of GPS and tracking technologies, huge volumes of trajectories are rapidly generated and collected. Under this, applications such as route recommendation and traveling behavior mining call for efficient trajectory retrieval. In this paper, we first focus on distance-to-points trajectory search; given a collection of trajectories and a set query points, the goal is to retrieve the top-k trajectories that pass as close as possible to all query points. We advance the state-of-the-art by combining existing approaches to a hybrid nearest neighbor-based method while also proposing an alternative, more efficient spatial range-based approach. Second, we investigate the continuous counterpart of distance-to-points trajectory search where the query is long-standing and the set of returned trajectories needs to be maintained whenever updates occur to the query and/or the data. Third, we propose and study two practical variants of distance-to-points trajectory search, which take into account the temporal characteristics of the searched trajectories. Through an extensive experimental analysis with real trajectory data, we show that our range-based approach outperforms previous methods by at least one order of magnitude for the snapshot and up to several times for the continuous version of the queries. Numéro de notice : A2017-600 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-016-0267-9 En ligne : https://doi.org/10.1007/s10707-016-0267-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86908
in Geoinformatica > vol 21 n° 4 (October - December 2017) . - pp 669 - 701[article]