Détail de l'auteur
Auteur Désiré Sidibé |
Documents disponibles écrits par cet auteur (8)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Improving image description with auxiliary modality for visual localization in challenging conditions / Nathan Piasco in International journal of computer vision, vol 29 n° 1 (January 2021)
[article]
Titre : Improving image description with auxiliary modality for visual localization in challenging conditions Type de document : Article/Communication Auteurs : Nathan Piasco , Auteur ; Désiré Sidibé, Auteur ; Valérie Gouet-Brunet , Auteur ; Cédric Demonceaux, Auteur Année de publication : 2021 Projets : PLaTINUM / Gouet-Brunet, Valérie Article en page(s) : pp 185 - 202 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] descripteur
[Termes IGN] localisation basée image
[Termes IGN] localisation basée visionRésumé : (auteur) Image indexing for lifelong localization is a key component for a large panel of applications, including robot navigation, autonomous driving or cultural heritage valorization. The principal difficulty in long-term localization arises from the dynamic changes that affect outdoor environments. In this work, we propose a new approach for outdoor large scale image-based localization that can deal with challenging scenarios like cross-season, cross-weather and day/night localization. The key component of our method is a new learned global image descriptor, that can effectively benefit from scene geometry information during training. At test time, our system is capable of inferring the depth map related to the query image and use it to increase localization accuracy. We show through extensive evaluation that our method can improve localization performances, especially in challenging scenarios when the visual appearance of the scene has changed. Our method is able to leverage both visual and geometric clues from monocular images to create discriminative descriptors for cross-season localization and effective matching of images acquired at different time periods. Our method can also use weakly annotated data to localize night images across a reference dataset of daytime images. Finally we extended our method to reflectance modality and we compare multi-modal descriptors respectively based on geometry, material reflectance and a combination of both. Numéro de notice : A2021-132 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-020-01363-6 Date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s11263-020-01363-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96971
in International journal of computer vision > vol 29 n° 1 (January 2021) . - pp 185 - 202[article]Real-time multimodal semantic scene understanding for autonomous UGV navigation / Yifei Zhang (2021)
Titre : Real-time multimodal semantic scene understanding for autonomous UGV navigation Type de document : Thèse/HDR Auteurs : Yifei Zhang, Auteur ; Fabrice Mériaudeau, Directeur de thèse ; Désiré Sidibé, Directeur de thèse Editeur : Dijon : Université Bourgogne Franche-Comté UBFC Année de publication : 2021 Importance : 114 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le doctorat de l'Université Bourgogne Franche-Comté, Spécialité Instrumentation et informatique d’imageLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] données polarimétriques
[Termes IGN] fusion d'images
[Termes IGN] image RVB
[Termes IGN] intégration de données
[Termes IGN] navigation autonome
[Termes IGN] segmentation sémantique
[Termes IGN] temps réel
[Termes IGN] véhicule sans piloteIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Robust semantic scene understanding is challenging due to complex object types, as well as environmental changes caused by varying illumination and weather conditions. This thesis studies the problem of deep semantic segmentation with multimodal image inputs. Multimodal images captured from various sensory modalities provide complementary information for complete scene understanding. We provided effective solutions for fully-supervised multimodal image segmentation and few-shot semantic segmentation of the outdoor road scene. Regarding the former case, we proposed a multi-level fusion network to integrate RGB and polarimetric images. A central fusion framework was also introduced to adaptively learn the joint representations of modality-specific features and reduce model uncertainty via statistical post-processing.In the case of semi-supervised semantic scene understanding, we first proposed a novel few-shot segmentation method based on the prototypical network, which employs multiscale feature enhancement and the attention mechanism. Then we extended the RGB-centric algorithms to take advantage of supplementary depth cues. Comprehensive empirical evaluations on different benchmark datasets demonstrate that all the proposed algorithms achieve superior performance in terms of accuracy as well as demonstrating the effectiveness of complementary modalities for outdoor scene understanding for autonomous navigation. Note de contenu : 1. Introduction
1.1 Context and Motivation
1.2 Background and Challenges
1.3 Contributions
1.4 Organization
2. Background on Neural Networks
2.1 Basic Concepts
2.2 Neural Network Layers
2.3 Optimization
2.4 Model Training
2.5 Evaluation Metrics
2.6 Summary
3. Literature Review
3.1 Fully-supervised Semantic Image
3.2 Datasets
3.3 Summary
4. Deep Multimodal Fusion for Semantic Image Segmentation
4.1 CMNet: Deep Multimodal Fusion
4.2 A Central Multimodal Fusion Framework
4.3 Summary
5. Few-shot Semantic Image Segmentation
5.1 Introduction on Few-shot Segmentation
5.2 MAPnet: A Multiscale Attention-Based Prototypical Network
5.3 RDNet: Incorporating Depth Information into Few-shot Segmentation
5.4 Summary
6. Conclusion and Future Work
6.1 General Conclusion
6.2 Future PerspectivesNuméro de notice : 26527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Instrumentation et informatique d’image : Bourgogne : 2021 nature-HAL : Thèse Date de publication en ligne : 02/03/2021 En ligne : https://hal.science/tel-03154783v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97556
Titre : Geometric camera pose refinement with learned depth maps Type de document : Article/Communication Auteurs : Nathan Piasco , Auteur ; Désiré Sidibé, Auteur ; Cédric Demonceaux, Auteur ; Valérie Gouet-Brunet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2019 Projets : PLaTINUM / Gouet-Brunet, Valérie Conférence : ICIP 2019, 26th IEEE International Conference on Image Processing 22/09/2019 25/09/2019 Taipei Taiwan Proceedings IEEE Importance : 5 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme ICP
[Termes IGN] carte de profondeur
[Termes IGN] estimation de pose
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scène intérieure
[Termes IGN] semis de pointsRésumé : (auteur) We present a new method for image-only camera relocalisation composed of a fast image indexing retrieval step followed by pose refinement based on ICP (Iterative Closest Point). The first step aims to find an initial pose for the query by evaluating images similarity with low dimensional global deep descriptors. Subsequently, we predict with a fully convolutional deep encoder-decoder neural network a dense depth map from the image query. We use this depth map to create a local point cloud and refine the initial query pose using an ICP algorithm.We demonstrate the effectiveness of our new approach on various indoor scenes. Compared to learned pose regression methods, our proposal can be used on multiple scenes without the need of a specific weights-setup for each scene, while showing equivalent results. Numéro de notice : C2019-015 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/ICIP.2019.8803014 Date de publication en ligne : 26/08/2019 En ligne : https://doi.org/10.1109/ICIP.2019.8803014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93279
Titre : Learning scene geometry for visual localization in challenging conditions Type de document : Article/Communication Auteurs : Nathan Piasco , Auteur ; Désiré Sidibé, Auteur ; Valérie Gouet-Brunet , Auteur ; Cédric Demonceaux, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2019 Projets : PLaTINUM / Gouet-Brunet, Valérie Conférence : ICRA 2019, International Conference on Robotics and Automation 20/05/2019 24/05/2019 Montréal Québec - Canada Proceedings IEEE Importance : pp 9094 - 9100 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse visuelle
[Termes IGN] appariement d'images
[Termes IGN] carte de profondeur
[Termes IGN] descripteur
[Termes IGN] géométrie de l'image
[Termes IGN] image RVB
[Termes IGN] localisation basée vision
[Termes IGN] précision de localisation
[Termes IGN] prise de vue nocturne
[Termes IGN] robotique
[Termes IGN] scène urbaine
[Termes IGN] variation diurne
[Termes IGN] variation saisonnière
[Termes IGN] vision par ordinateurRésumé : (auteur) We propose a new approach for outdoor large scale image based localization that can deal with challenging scenarios like cross-season, cross-weather, day/night and longterm localization. The key component of our method is a new learned global image descriptor, that can effectively benefit from scene geometry information during training. At test time, our system is capable of inferring the depth map related to the query image and use it to increase localization accuracy. We are able to increase recall@1 performances by 2.15% on cross-weather and long-term localization scenario and by 4.24% points on a challenging winter/summer localization sequence versus state-of-the-art methods. Our method can also use weakly annotated data to localize night images across a reference dataset of daytime images. Numéro de notice : C2019-002 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/ICRA.2019.8794221 Date de publication en ligne : 12/08/2019 En ligne : http://doi.org/10.1109/ICRA.2019.8794221 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93774 Documents numériques
en open access
Learning scene geometry... - pdf auteurAdobe Acrobat PDF
Titre : Perspective-n-learned-point: pose estimation from relative depth Type de document : Article/Communication Auteurs : Nathan Piasco , Auteur ; Désiré Sidibé, Auteur ; Cédric Demonceaux, Auteur ; Valérie Gouet-Brunet , Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2019 Projets : PLaTINUM / Gouet-Brunet, Valérie Conférence : BMVC 2019, British Machine Vision Conference 09/09/2019 12/09/2019 Cardiff Royaume-Uni OA Proceedings Importance : 15 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte de profondeur
[Termes IGN] classification par réseau neuronal
[Termes IGN] estimation de pose
[Termes IGN] géométrie de l'image
[Termes IGN] recherche d'image basée sur le contenuRésumé : (Auteur) In this paper we present an online camera pose estimation method that combines Content-Based Image Retrieval (CBIR) and pose refinement based on a learned representation of the scene geometry extracted from monocular images. Our pose estimation method is two-step, we first retrieve an initial 6 Degrees of Freedom (DoF) location of an unknown-pose query by retrieving the most similar candidate in a pool of geo-referenced images. In a second time, we refine the query pose with a Perspective-n-Point (PnP) algorithm where the 3D points are obtained thanks to a generated depth map from the retrieved image candidate. We make our method fast and lightweight by using a common neural network architecture to generate the image descriptor for image indexing and the depth map used to create the 3D points required in the PnP pose refinement step. We demonstrate the effectiveness of our proposal through extensive experimentation on both indoor and outdoor scenes, as well as generalisation capability of our method to unknown environment. Finally, we show how to deploy our system even if geometric information is missing to train our monocular-image-to-depth neural networks. Numéro de notice : C2019-025 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans Date de publication en ligne : 12/11/2019 En ligne : https://bmvc2019.org/wp-content/uploads/papers/0981-paper.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94320 Documents numériques
en open access
Perspective-n-learned-point ... - pdf auteurAdobe Acrobat PDF A survey on visual-based localization : on the benefit of heterogeneous data / Nathan Piasco in Pattern recognition, vol 74 (February 2018)PermalinkPermalinkPermalink