Détail de l'auteur
Auteur Li-Chien Lee |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Band subset selection for anomaly detection in hyperspectral imagery / Lin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
[article]
Titre : Band subset selection for anomaly detection in hyperspectral imagery Type de document : Article/Communication Auteurs : Lin Wang, Auteur ; Chein-I Chang, Auteur ; Li-Chien Lee, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4887 - 4898 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'anomalie
[Termes IGN] détection de cible
[Termes IGN] image hyperspectrale
[Termes IGN] jeu de donnéesRésumé : (Auteur) This paper presents a new approach, called band subset selection (BSS)-based hyperspectral anomaly detection (AD), which selects multiple bands simultaneously as a band subset rather than selecting multiple bands one at a time as the tradition band selection (BS) does, referred to as sequential multiple BS (SQMBS). Its idea is to first use virtual dimensionality (VD) to determine the number of multiple bands, nBS needed to be selected as a band subset and then develop two iterative process, sequential BSS (SQ-BSS) algorithm and successive BSS (SC-BSS) algorithm to find an optimal band subset numerically among all possible nBS combinations out of the full band set. In order to terminate the search process the averaged least-squares error (ALSE) and 3-D receiver operating characteristic (3D ROC) curves are used as stopping criteria to evaluate performance relative to AD using the full band set. Experimental results demonstrate that BSS generally performs better background suppression while maintaining target detection capability compared to target detection using full band information. Numéro de notice : A2017-658 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2681278 En ligne : https://doi.org/10.1109/TGRS.2017.2681278 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87069
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 9 (September 2017) . - pp 4887 - 4898[article]