Détail de l'auteur
Auteur Charles Toth |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-modal learning in photogrammetry and remote sensing / Michael Ying Yang in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
[article]
Titre : Multi-modal learning in photogrammetry and remote sensing Type de document : Article/Communication Auteurs : Michael Ying Yang, Auteur ; Loïc Landrieu , Auteur ; Devis Tuia, Auteur ; Charles Toth, Auteur Année de publication : 2021 Projets : 1-Pas de projet / Article en page(s) : pp 54 - 54 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] acquisition d'images
[Termes IGN] apprentissage automatique
[Termes IGN] données multisourcesRésumé : (Auteur) [Editorial] There is a growing interest in the photogrammetry and remote sensing community for multi-modal data, i. e., data simultaneously acquired from a variety of platforms, including satellites, aircraft, UAS/UGS, autonomous vehicles, etc., by different sensors, such as radar, optical, LiDAR. Thanks to their different spatial, spectral, or temporal resolutions, the use of complementary data sources leads to richer and more robust information extraction. We expect that the use of multiple modalities will rapidly become a standard approach in the future. The main difficulty of jointly processing multi-modal data is due to the differences in structure among modalities. Another issue is the unbalanced number of labelled samples available across modalities, resulting in a significant gap in performance when models are trained separately. Clearly, the photogrammetry and remote sensing community has not yet exploited the full potential of multi-modal data. Neural networks seem well suited for accommodating different data sources, thanks to their capabilities to learn representations adapted to each task in an end-to-end fashion. In this context, there is a strong need for research and development of approaches for multi-sensory and multi-modal deep learning within the geospatial domain. Numéro de notice : A2021-364 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.03.022 Date de publication en ligne : 23/04/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.03.022 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97660
in ISPRS Journal of photogrammetry and remote sensing > vol 176 (June 2021) . - pp 54 - 54[article]A geometric correspondence feature based-mismatch removal in vision based-mapping and navigation / Zeyu Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 10 (October 2017)
[article]
Titre : A geometric correspondence feature based-mismatch removal in vision based-mapping and navigation Type de document : Article/Communication Auteurs : Zeyu Li, Auteur ; Jinling Wang, Auteur ; Charles Toth, Auteur Année de publication : 2017 Article en page(s) : pp 693 - 704 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] appariement de données localisées
[Termes IGN] attribut géomètrique
[Termes IGN] erreur de positionnement
[Termes IGN] regroupement de données
[Termes IGN] vision par ordinateurRésumé : (auteur) Images with large-area repetitive texture, significant viewpoint, and illumination changes as well as occlusions often induce high-percentage keypoint mismatches, affecting the performance of vision-based mapping and navigation. Traditional methods for mismatch elimination tend to fail when the percentage of mismatches is high. In order to remove mismatches effectively, a new geometry-based approach is proposed in this paper, where Geometric Correspondence Feature (GCF) is used to represent the tentative correspondence. Based on the clustering property of GCFs from correct matches, a new clustering algorithm is developed to identify the cluster formed by the correct matches.
With the defined quality factor calculated from the identified cluster, a Progressive Sample Consensus (PROSAC) process integrated with hyperplane-model is employed to further eliminate mismatches. Extensive experiments based on both simulated and real images in indoor and outdoor environments have demonstrated that the proposed approach can significantly improve the performance of mismatch elimination in the presence of high-percentage mismatches.Numéro de notice : A2017-690 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.14358/PERS.83.10.693 En ligne : https://doi.org/10.14358/PERS.83.10.693 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87856
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 10 (October 2017) . - pp 693 - 704[article]