Détail de l'auteur
Auteur Vegard Ophaug |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Error propagation in regional geoid computation using spherical splines, least-squares collocation, and Stokes’s formula / Vegard Ophaug in Journal of geodesy, vol 94 n° 12 (December 2020)
[article]
Titre : Error propagation in regional geoid computation using spherical splines, least-squares collocation, and Stokes’s formula Type de document : Article/Communication Auteurs : Vegard Ophaug, Auteur ; Christian Gerlach, Auteur Année de publication : 2020 Article en page(s) : n° 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] altitude
[Termes IGN] collocation par moindres carrés
[Termes IGN] covariance
[Termes IGN] erreur
[Termes IGN] fonction spline
[Termes IGN] formule de Stokes
[Termes IGN] géoïde local
[Termes IGN] propagation d'erreurRésumé : (auteur) Current International Association of Geodesy efforts within regional geoid determination include the comparison of different computation methods in the quest for the “1-cm geoid.” Internal (formal) and external (empirical) approaches to evaluate geoid errors exist, and ideally they should agree. Spherical radial base functions using the spline kernel (SK), least-squares collocation (LSC), and Stokes’s formula are three commonly used methods for regional geoid computation. The three methods have been shown to be theoretically equivalent, as well as to numerically agree on the millimeter level in a closed-loop environment using synthetic noise-free data (Ophaug and Gerlach in J Geod 91:1367–1382, 2017. https://doi.org/10.1007/s00190-017-1030-1PANIST). This companion paper extends the closed-loop method comparison using synthetic data, in that we investigate and compare the formal error propagation using the three methods. We use synthetic uncorrelated and correlated noise regimes, both on the 1-mGal (=10−5 ms−2) level, applied to the input data. The estimated formal errors are validated by comparison with empirical errors, as determined from differences of the noisy geoid solutions to the noise-free solutions. We find that the error propagations of the methods are realistic in both uncorrelated and correlated noise regimes, albeit only when subjected to careful tuning, such as spectral band limitation and signal covariance adaptation. For the SKs, different implementations of the L-curve and generalized cross-validation methods did not provide an optimal regularization parameter. Although the obtained values led to a stabilized numerical system, this was not necessarily equivalent to obtaining the best solution. Using a regularization parameter governed by the agreement between formal and empirical error fields provided a solution of similar quality to the other methods. The errors in the uncorrelated regime are on the level of ∼5 mm and the method agreement within 1 mm, while the errors in the correlated regime are on the level of ∼10 mm, and the method agreement within 5 mm. Stokes’s formula generally gives the smallest error, closely followed by LSC and the SKs. To this effect, we note that error estimates from integration and estimation techniques must be interpreted differently, because the latter also take the signal characteristics into account. The high level of agreement gives us confidence in the applicability and comparability of formal errors resulting from the three methods. Finally, we present the error characteristics of geoid height differences derived from the three methods and discuss them qualitatively in relation to GNSS leveling. If applied to real data, this would permit identification of spatial scales for which height information is preferably derived by spirit leveling or GNSS leveling. Numéro de notice : A2020-784 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01443-y Date de publication en ligne : 27/11/2020 En ligne : https://doi.org/10.1007/s00190-020-01443-y Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96528
in Journal of geodesy > vol 94 n° 12 (December 2020) . - n° 120[article]On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation / Vegard Ophaug in Journal of geodesy, vol 91 n° 11 (November 2017)
[article]
Titre : On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation Type de document : Article/Communication Auteurs : Vegard Ophaug, Auteur ; Christian Gerlach, Auteur Année de publication : 2017 Article en page(s) : pp 1367 - 1382 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] collocation par moindres carrés
[Termes IGN] fonction de base radiale
[Termes IGN] fonction spline
[Termes IGN] formule de Stokes
[Termes IGN] géoïde local
[Termes IGN] précision millimétriqueRésumé : (Auteur) This work is an investigation of three methods for regional geoid computation: Stokes’s formula, least-squares collocation (LSC), and spherical radial base functions (RBFs) using the spline kernel (SK). It is a first attempt to compare the three methods theoretically and numerically in a unified framework. While Stokes integration and LSC may be regarded as classic methods for regional geoid computation, RBFs may still be regarded as a modern approach. All methods are theoretically equal when applied globally, and we therefore expect them to give comparable results in regional applications. However, it has been shown by de Min (Bull Géod 69:223–232, 1995. doi:10.1007/BF00806734) that the equivalence of Stokes’s formula and LSC does not hold in regional applications without modifying the cross-covariance function. In order to make all methods comparable in regional applications, the corresponding modification has been introduced also in the SK. Ultimately, we present numerical examples comparing Stokes’s formula, LSC, and SKs in a closed-loop environment using synthetic noise-free data, to verify their equivalence. All agree on the millimeter level. Numéro de notice : A2017-707 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1030-1 En ligne : https://doi.org/10.1007/s00190-017-1030-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88088
in Journal of geodesy > vol 91 n° 11 (November 2017) . - pp 1367 - 1382[article]